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2018.3 Question 1

1. By differentiation with respect to β, we have

f ′(β) = 1 +
1

β2
+

2

β3
.

If f ′(t) = 0, we must have
t3 + t+ 2 = 0.

Therefore,
(t+ 1)(t2 − t+ 2) = 0,

and hence the only real root to this is t = −1, since (−1)2 − 2 · 4 < 0.

This means the only stationary point of y = f(β) is (−1, f(−1) = −1).

For the limiting behaviour of the function, we first look at the case where β > 0. As β → ∞, we
have f(β) → β from below. As β → 0+, we have f(β) → − 1

β − 1
β2 → −∞.

When β < 0, we use the substitution t = − 1
β to make the behaviours more convincing, and hence

f(β) = β + t− t2.

As β → 0−, we have t → ∞, and f(β) → t − t2 → −∞. As β → −∞, we have t → 0+, and
f(β) → β from above, since t− t2 = t(1− t) > 0 when 0 < t < 1.

This means the curve y = f(β) is as below.

x

y

O

y = f(x)

y = x

(−1,−1)

Similarly, by differentiation with respect to β, we have

g′(β) = 1− 3

β2
+

2

β3
.

If g′(t) = 0, we must have
t3 − 3t+ 2 = 0.

Therefore,
(t− 1)2(t+ 2) = 0,
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and hence the real roots to this is t = 1 and t = −2.

This means the stationary points of y = g(β) is (1, g(1) = 3) and (−2, g(−2) = − 15
4 ).

For the limiting behaviour of the function, we first look at the case where β > 0. We consider the
substitution t = − 1

β to make the behaviours more convincing, and hence

g(β) = β − 3t− t2.

As β → ∞, t → 0−, and hence f(β) → β from below, since −3t−t2 = −t(t+3) > 0 for −3 < t < 0.
As β → 0+, t → −∞, and hence f(β) → −3t− t2 → −∞.

When β < 0, we have as β → 0−, f(β) → −∞. As β → −∞, f(β) → β from below.

This means the curve y = g(β) is as below.

x

y

O

y = g(x)

y = x

(1, 3)

(
−2,− 15

4

)

2. By Vieta’s Theorem, we have u+ v = −α, and uv = β. Hence,

u+ v +
1

uv
= −α+

1

β
,

and
1

u
+

1

v
+ uv =

u+ v

uv
+ uv = −α

β
+ β.

3. By the given condition, we have

−α+
1

β
= −1 ⇐⇒ α = 1 +

1

β
.
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Hence,

1

u
+

1

v
+ uv = −α

β
+ β

= −
1 + 1

β

β
+ β

=
β2 − 1− 1

β

β

= β − 1

β
− 1

β2

= f(β).

Also, since u, v are both real, we have

α2 − 4β =

(
1 +

1

β

)2

− 4β

= 1 +
2

β
+

1

β2
− 4β

=
−4β3 + β2 + 2β + 1

β2

≥ 0.

Multiplying both sides by −β2 (which flips the sign) gives

4β3 − β2 − 2β − 1 ≤ 0

(β − 1)(4β2 + 3β + 1) ≤ 0.

This cubic has exactly one real root β = 1, so the solution to this inequality is β ≤ 1 and β ̸= 0.

Notice that f is increasing on (0, 1] ⊂ (0,∞). Therefore, for β > 0,

f(β) ≤ f(1) = 1− 1− 1 = −1.

When β < 0, we have
f(β) ≤ f(−1) = −1.

So for the range of β in this question, we always have f(β) ≤ −1. But we also have 1
u+

1
v +uv ≤ −1

as shown before. These gives us exactly our desired statement.

4. By the given condition, we have

−α+
1

β
= 3 ⇐⇒ α = −3 +

1

β
.

Hence,

1

u
+

1

v
+ uv = −α

β
+ β

= −
−3 + 1

β

β
+ β

= β +
3

β
− 1

β2

= g(β).

Also, since u, v are both real, we have β ≤ 1 and β ̸= 0 as well.

g must be increasing on (0, 1]. Hence, for β > 0, we have

g(β) ≤ g(1) = 3.
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When β < 0, we have

g(β) ≤ g(−2) = −15

4
.

Since 3 > − 15
4 , we can conclude that the maximum value of 1

u + 1
v + uv is 3, and it is taken when

β = 1, which corresponds to α = −2.
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2018.3 Question 2

1. Notice that

dyn
dx

=
d(−1)n 1

z
dnz
dxn

dx

= (−1)n

[
d 1
z

dx
· d

nz

dxn
+

1

z
·
d dnz
dxn

dx

]

= (−1)n
[
2x

z
· d

nz

dxn
+

1

z
· d

n+1z

dxn+1

]
= 2x · (−1)n

1

z

dnz

dxn
− (−1)n+1 1

z

dn+1z

dxn+1

= 2xyn − yn+1,

as desired.

2. We first look at the base case where n = 1. What is desired is

y2 = 2xy1 − 2y0.

We have y0 = 1,

y1 = (−1)1
1

e−x2

de−x2

dx
= −ex

2

(−2x)e−x2

= 2x,

and

y2 = 2xy1 −
dy1
dx

= 2x · 2x− 2 = 4x2 − 2.

Hence,
2xy1 − 2y0 = 2x · 2x− 2 · 1− 4x2 − 2 = y2,

so the base case is satisfied.

Now assume this is true for some n = k ≥ 1, i.e.

yk+1 = 2xyk − 2kyk−1.

We have

yk+2 = 2xyk+1 −
dyk+1

dx

= 2xyk+1 −
d (2xyk − 2kyk−1)

dx

= 2xyk+1 − 2yk − 2x
dyk
dx

+ 2k
dyk−1

dx
= 2xyk+1 − 2yk − 2x(2xyk − yk+1) + 2k(2xyk−1 − yk)

= 2xyk+1 − 2yk − 4x2yk + 2xyk+1 + 4kxyk−1 − 2kyk

= 4xyk+1 − 2(2x2 + k + 1)yk + 4kxyk−1

= 4xyk+1 − 2(2x2 + k + 1)yk + 4kx · 2xyk − yk+1

2k

= 4xyk+1 − 2(2x2 + k + 1)yk + 2x(2xyk − yk+1)

= 2xyk+1 − 2(k + 1)yk,

which is exactly the statement for n = k + 1.

Hence, by the principle of mathematical induction, we have yn+1 = 2xyn − 2nyn−1 for all n ≥ 1.

We have

LHS = y2n+1 − ynyn+2

= y2n+1 − yn(2xyn+1 − 2(n+ 1)yn)

= y2n+1 − 2xynyn+1 + 2(n+ 1)y2n
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and

RHS = 2n(y2n − yn−1yn+1) + 2y2n

= 2n

(
y2n − 2xyn − yn+1

2n
yn+1

)
+ 2y2n

= 2ny2n − (2xyn − yn+1) yn+1 + 2y2n

= 2ny2n − 2xynyn+1 + y2n+1 + 2y2n

= y2n+1 − 2xynyn+1 + 2(n+ 1)y2n.

3. This can be shown by induction on n. The base case for n = 1 is

y21 − y0y2 = (2x)2 − 1 · (4x2 − 2) = 2 > 0

is true.

Now assume the statement is true for n = k ≥ 1, i.e.

y2k − yk−1yk+1 > 0.

We have

y2k+1 − ykyk+2 = 2n(y2k − yk−1yk + 1) + 2y2n

> 2n · 0 + y2n

= 0 + y2n

≥ 0,

which is the statement for n = k + 1.

Hence, by the principle of mathematical induction, we have y2n − yn−1yn+1 > 0 for all n ≥ 1.
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2018.3 Question 3

Notice that

xa(xb(xcy)′)′ = xa(xb(cxc−1y + xcy′))′

= xa
[
xb+c−1 (cy + xy′)

]′
= xa

[
(b+ c− 1)xb+c−2 (cy + xy′) + xb+c−1 (cy′ + y′ + xy′′)

]
= xa+b+c−2 [(b+ c− 1) (cy + xy′) + x (cy′ + y′ + xy′′)]

= xa+b+c−2
[
x2y′′ + (b+ 2c)xy′ + (b+ c− 1)cy

]
.

Comparing this with the left-hand side of the original equation, we must have
a+ b+ c− 2 = 0,

b+ 2c = 1− 2p,

(b+ c− 1)c = p2 − q2.

The second equation gives
b = 1− 2p− 2c,

and putting this into the third equation gives

(1− 2p− 2c+ c− 1)c = p2 − q2,

and hence
c2 + 2pc+ p2 − q2 = 0.

This gives
(c+ (p− q))(c+ (p+ q)) = 0,

and hence
c1 = −p+ q, c2 = −p− q.

Putting this back, we get

b1 = 1− 2p− 2(−p+ q) = 1− 2q, b2 = 1− 2p− 2(−p− q) = 1 + 2q,

and since a = 2− b− c from the first equation, we have

a1 = 2− (1− 2q)− (−p+ q) = 1 + p+ q

and
a2 = 2− (1 + 2q)− (−p− q) = 1 + p− q

Hence, the solutions are 
a = p± q + 1,

b = ∓2q + 1,

c = −p± q.

1. In the case where f(x) = 0. We must have

xa
(
xb(xcy)′

)′
= 0,

and hence (
xb(xcy)′

)′
= 0.

Therefore, we must have by integration

xb(xcy)′ = C1

for some (real) constant C1.

Hence,
(xcy)′ = C1x

−b.

There are two cases here:
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(a) When b = 1 i.e. q = 0, the right-hand side is C1x
−1, and the left-hand side is (xcy)′.

Integrating both sides give
xcy = C1 lnx+ C2

for some (real) constant C2.

Hence,
y = x−c(C1 lnx+ C2)

for some (real) constants C1, C2.

When q = 0, c = −p, and hence

y = xp(C1 lnx+ C2).

(b) When b ̸= 1 i.e. q ̸= 0, integrating both sides give

xcy =
C1x

−b+1

−b+ 1
+ C2

for some (real) constant C2.

Hence,

y = x−c

(
C1x

−b+1

−b+ 1
+ C2

)
for some (real) constant C1, C2.

Hence,

y = x−(−p±q)

(
C1x

−(∓2q+1)+1

−(∓2q + 1) + 1
+ C2

)
= xp∓q

(
C1x

±2q

±2q
+ C2

)
.

=
C1

±2q
xp±q + C2x

p∓q

= C3x
p±q + C2x

p∓q,

for some (real) constant C2, C3.

2. This is when q = 0 and f(x) = xn. We have a = p + 1, b = 1 and c = −p, and the original
differential equation reduces to

xp+1
(
x
(
x−py

)′)′
= xn,

and hence (
x
(
x−py

)′)′
= xn−p−1.

There are two cases here:

(a) If n− p− 1 = −1, i.e. n = p, we have, by integration,

x
(
x−py

)′
= lnx+ C1.

This gives (
x−py

)′
=

lnx

x
+

C1

x
,

and hence by integration

x−py =
(lnx)2

2
+ C1 lnx+ C2.

This solves to

y =
xp(lnx)2

2
+ C1x

p lnx+ C2x
p.
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(b) If n− p− 1 ̸= −1, i.e. n ̸= p, we have

x
(
x−py

)′
=

xn−p

n− p
+ C1.

This gives (
x−py

)′
=

xn−p−1

n− p
+

C1

x
.

Since n− p− 1 ̸= −1, by integration we have

x−py =
xn−p

(n− p)2
+ C1 lnx+ C2,

and hence

y =
xn

(n− p)2
+ C1x

p lnx+ C2x
p.
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2018.3 Question 4

The hyperbola has parametric equation {
x = a sec θ,

y = b tan θ.

Hence, by differentiation, we have

dy

dx
=

dy
dθ
dx
dθ

=
b sec2 θ

a sec θ tan θ

=
b cos θ

a sin θ cos θ

=
b

a sin θ
.

The tangent to the hyperbola at P will be

y − b tan θ =
b

a sin θ
(x− a sec θ),

which simplifies to
ay sin θ − ab tan θ sin θ = bx− ab sec θ,

and hence
bx− ay sin θ = ab(sec θ − tan θ sin θ).

Notice that

sec θ − tan θ sin θ =
1− sin2 θ

cos θ
=

cos2 θ

cos θ
= cos θ,

and so the equation of the tangent is

bx− ay sin θ = ab cos θ,

exactly as desired.

1. Let x
a = y

b = s for S, we have x = as and y = bs, and hence

abs− abs sin θ = ab cos θ,

which gives

s =
cos θ

1− sin θ
,

and hence

S

(
a

cos θ

1− sin θ
, b

cos θ

1− sin θ

)
.

Let x
a = −y

b = t for T , we have x = at and y = −bt, and hence

abt+ abt sin θ = ab cos θ,

which gives

t =
cos θ

1 + sin θ
,

and hence

T

(
a

cos θ

1 + sin θ
,−b

cos θ

1 + sin θ

)
.
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We have

a cos θ
1−sin θ + a cos θ

1+sin θ

2
=

a cos θ

2

(
1

1− sin θ
+

1

1 + sin θ

)
=

a cos θ

2

(
2

cos2 θ

)
=

a

cos θ
= a sec θ,

and

a cos θ
1−sin θ − b cos θ

1+sin θ

2
=

b cos θ

2

(
1

1− sin θ
− 1

1 + sin θ

)
=

b cos θ

2

(
2 sin θ

cos2 θ

)
=

b sin θ

cos θ
= b tan θ.

This means the midpoint of ST is (a sec θ, b tan θ), which is exactly P .

2. Since the tangents are perpendicular, that means

dy

dx

∣∣∣∣
θ

· dy

dx

∣∣∣∣
φ

= −1,

and hence
b

a sin θ
· b

a sinφ
= −1,

which means
b2 = −a2 sin θ sinφ.

The two tangents are
bx− ay sin θ = ab cos θ

and
bx− ay sinφ = ab cosφ.

Since bx = bx, we have
ay sin θ + ab cos θ = ay sinφ+ ab cosφ,

and hence
y(sin θ − sinφ) = b(cosφ− cos θ),

which gives

y = b · cosφ− cos θ

sin θ − sinφ
.

Hence,

x =
ab cos θ + ay sin θ

b

=
a

b

(
b cos θ + b sin θ

cosφ− cos θ

sin θ − sinφ

)
= a

(
cos θ + sin θ

cosφ− cos θ

sin θ − sinφ

)
= a

cos θ(sin θ − sinφ) + sin θ(cosφ− cos θ)

sin θ − sinφ

= a · sin θ cosφ− cos θ sinφ

sin θ − sinφ

= a · sin(θ − φ)

sin θ − sinφ
.
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This means 
x2 = a2 · sin2(θ − φ)

(sin θ − sinφ)
2 ,

y2 = b2 · (cosφ− cos θ)
2

(sin θ − sinφ)
2 = −a2 sin θ sinφ · (cosφ− cos θ)

2

(sin θ − sinφ)
2 .

Notice that
a2 − b2 = a2 + a2 sin θ sinφ = a2(1 + sin θ sinφ).

Hence,

x2 + y2 = a2

[
sin2(θ − φ)

(sin θ − sinφ)
2 − sin θ sinφ · (cosφ− cos θ)

2

(sin θ − sinφ)
2

]

=
a2

(sin θ − sinφ)2

[
sin2(θ − φ)− sin θ sinφ (cosφ− cos θ)

2
]
.

What is desired is to show

(1 + sin θ sinφ)(sin θ − sinφ)2 = sin2(θ − φ)− sin θ sinφ (cosφ− cos θ)
2
.

We have

RHS = (sin θ cosφ− cos θ sinφ)2 − sin θ sinφ(cos2 φ+ cos2 θ − 2 cosφ cos θ)

= sin2 θ cos2 φ+ cos2 θ sin2 φ− 2 sin θ cos θ sinφ cosφ

− sin θ sinφ cos2 φ− sin θ sinφ cos2 θ + 2 sin θ cos θ sinφ cosφ

= sin θ cos2 φ(sin θ − sinφ) + cos2 θ sinφ(sinφ− sin θ)

= (sin θ cos2 φ− cos2 θ sinφ)(sin θ − sinφ).

Therefore, what is left to prove is that

(1 + sin θ sinφ)(sin θ − sinφ) = sin θ cos2 φ− cos2 θ sinφ

Notice that

LHS = sin θ − sinφ+ sin2 θ sinφ− sin θ sin2 φ

= sin θ(1− sin2 φ)− sinφ(1− sin2 θ)

= sin θ cos2 φ− sinφ cos2 θ

= RHS.

This shows that

1

(sin θ − sinφ)2

[
sin2(θ − φ)− sin θ sinφ (cosφ− cos θ)

2
]
= 1 + sin θ sinφ,

and hence
x2 + y2 = a2 − b2,

as desired.
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2018.3 Question 5

1. First, we notice that

Gk+1
k+1 =

k+1∏
t=1

at = ak+1G
k
k,

and hence

Gk+1 =
(
ak+1G

k
k

) 1
k+1 .

Similarly, notice that

(k + 1)Ak+1 =

k+1∑
t=1

at = ak+1 + kAk.

Hence,

(k + 1) (Ak+1 −Gk+1) ≥ k (Ak −Gk) ,

ak+1 + kAk − (k + 1)
(
ak+1G

k
k

) 1
k+1 ≥ kak − kGk,

ak+1 + kGk ≥ (k + 1)a
1

k+1

k+1G
k

k+1

k .

Dividing both sides by Gk, we have

ak+1

Gk
+ k ≥ (k + 1)a

1
k+1

k+1G
− 1

k+1

k ,

λk+1
k + k ≥ (k + 1)

(
ak+1

Gk

) 1
k+1

,

λk+1
k + k ≥ (k + 1)λk,

λk+1
k − (k + 1)λk + k ≥ 0,

as desired. (Notice that the condition for the equal sign is equivalent as well.)

2. By differentiation, we have

f ′(x) = (k + 1)xk − (k + 1) = (k + 1)(xk − 1).

When x ∈ (0, 1), xk ∈ (0, 1), f ′(x) < 0, and hence f is strictly decreasing.

When x ∈ (1,∞), xk ∈ (1,∞), f ′(x) > 0, and hence f is strictly increasing.

Hence, f(1) is the minimum for f on (0,∞). This means for all x ∈ (0,∞), we have

f(x) ≥ f(1) = 1k+1 − (k + 1) + k = 0,

taking the equal sign if and only if x = 1.

3. (a) We show this by induction. For the base case n = 1, A1 = G1 = a1, so naturally An ≥ Gn is
satisfied.

Assume that the statement holds for some n = k, i.e. Ak ≥ Gk, Ak −Gk ≥ 0. Since k > 0 as
well, we must have

(k + 1)(Ak+1 −Gk+1) ≥ k(Ak −Gk) ≥ 0.

We also have k + 1 > 0, and hence

Ak+1 −Gk+1 ≥ 0 ⇐⇒ Ak+1 ≥ Gk+1,

meaning the statement holds for n = k + 1 as well.

Hence, by the principle of mathematical induction, we must have An ≥ Gn for all n ∈ N,
which finishes our proof.
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(b) We show this by induction. For the base case n = 1, this condition is naturally satisfied.

Assume that the statement holds for some n = k, i.e. Ak = Gk =⇒ a1 = a2 = · · · = ak. We
show this for n = k + 1. If Ak+1 = Gk+1, then we must have

k(Ak −Gk) ≤ (k + 1)(Ak+1 −Gk+1) = 0,

but since Ak ≥ Gk, we must have then Ak = Gk, and hence the equal sign in the inequality
being taken.

This must mean that

λk =

(
ak+1

Gk

) 1
k+1

= 1,

and hence
ak+1 = Gk.

At the same time, since Ak = Gk, we must have a1 = a2 = · · · = ak, and hence Gk = a1 =
a2 = · · · = ak. Therefore, we must also have

a1 = a2 = · · · = ak = ak+1,

which proves the statement that Ak+1 = Gk+1 implies a1 = a2 = · · · = ak = ak+1, which is
the original statement for n = k + 1.

Hence, by the principle of mathematical induction, we must have An = Gn implies a1 = a2 =
· · · = an for all n ∈ N, which finishes our proof.
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2018.3 Question 6

1. Since A,Q,C lie on a straight line, AQ = λAC for some λ ∈ R. This means

q − a = λ(c− a),

and hence
q − a

c− a
= λ ∈ R,

as required.

Hence, we must have
q − a

c− a
=

(
q − a

c− a

)∗

=
q∗ − a∗

c∗ − a∗
.

Cross-multiplying the terms out give

(c− a)(q∗ − a∗) = (c∗ − a∗)(q − a)

exactly as desired.

Substituting in a∗ = 1/a and c∗ = 1/c, we have

(c− a)

(
q∗ − 1

a

)
=

(
1

c
− 1

a

)
(q − a),

and expanding the brackets gives

cq∗ − aq∗ − c

a
+ 1 =

q

c
− a

c
− q

a
+ 1,

and hence
cq∗ − aq∗ − c

a
=

q

c
− a

c
− q

a
.

Multiplying by ac on both sides gives us

ac2q∗ − a2cq∗ − c2 = aq − a2 − cq,

and hence
ac(c− a)q∗ = (a− c)q − (a2 − c2) = (a− c)q − (a− c)(a+ c).

We can divide through (a− c) on both sides since a ̸= c. Hence,

0 = q − (a+ c) + acq∗,

and hence
acq∗ + q = a+ c,

as desired.

2. By part 1, we must have
acq∗ + q = a+ c, bdq∗ + q = b+ d.

Since q = q, we have
acq∗ − (a+ c) = bdq∗ − (b+ d),

and rearranging gives
(ac− bd)q∗ = (a+ c)− (b+ d),

exactly as desired.

We also have q∗ = q∗, and hence
a+ c− q

ac
=

b+ d− q

bd
,

which gives
(bd)(a+ c− q) = (ac)(b+ d− q),
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and rearranging gives
(ac− bd)q = ac(b+ d)− bd(a+ c).

Summing this with previously, we have

(ac− bd)(q + q∗) = (a+ c)− (b+ d) + ac(b+ d)− bd(a+ c).

We notice that

(a+ c)− (b+ d) + ac(b+ d)− bd(a+ c) = a+ c− b− d+ abc+ acd− abd− bcd

= a− b+ acd− bcd+ c− d+ abc− abd

= (a− b)(1 + cd) + (c− d)(1 + ab),

and hence
(ac− bd)(q + q∗) = (a− b)(1 + cd) + (c− d)(1 + ab),

exactly as desired.

3. By part 1, we must have
p+ abp∗ = a+ b.

Since p is real, p = p∗, and hence
(1 + ab)p = a+ b,

as desired.

Similarly, we must have
(1 + cd)q = c+ d,

and putting this back into the result from part 2, we have

(ac− bd)(q + q∗) =
(a− b)(c+ d)

p
+

(c− d)(a+ b)

p
,

and hence since ac− bd ̸= 0, we have

p(q + q∗) =
(a− b)(c+ d) + (c− d)(a+ b)

ac− bd

=
ac+ ad− bc− bd+ ac+ bc− ad− bd

ac− bd

=
2ac− 2bd

ac− bd

= 2,

as desired.
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2018.3 Question 7

1. We have

(cot θ + i)2n+1 − (cot θ − i)2n+1

2i

=
(cos θ + i sin θ)

2n+1 − (cos θ − i sin θ)2n+1

2i sin2n+1 θ

=
(cos(2n+ 1)θ + i sin(2n+ 1)θ)− (cos(2n+ 1)θ − i sin(2n+ 1)θ)

2i sin2n+1 θ

=
2i sin(2n+ 1)θ

2i sin2n+1 θ

=
sin(2n+ 1)θ

sin2n+1 θ
,

as desired.

By applying the binomial expansion formula on the numerator, we have

(cot θ + i)2n+1 − (cot θ − i)2n+1

=

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i2n+1−t −

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · (−i)2n+1−t

=

2n+1∑
t=0

(
2n+ 1

t

)
cott θ ·

[
i2n+1−t − (−i)2n+1−t

]
= (−1)n · i ·

2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i−t ·

[
1− (−1)1−t

]
.

Due to the existence of the final term, this means that only terms with even t will retain (give a
2), and odd ts will cancel. Hence,

(cot θ + i)2n+1 − (cot θ − i)2n+1

= (−1)n · i ·
2n+1∑
t=0

(
2n+ 1

t

)
cott θ · i−t ·

[
1− (−1)1−t

]
= (−1)n · 2i ·

n∑
t=0

(
2n+ 1

2t

)
cot2t θ · i−2t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2t

)
cot2t θ · (−1)t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2n− 2t+ 1

)
cot2t θ · (−1)t

= 2i(−1)n ·
n∑

t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)n−t

= 2i ·
n∑

t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)t.

Hence,

sin(2n+ 1)θ

sin2n+1 θ

=
2i ·
∑n

t=0

(
2n+1
2t+1

)
cot2(n−t) θ · (−1)t

2i

=

n∑
t=0

(
2n+ 1

2t+ 1

)
cot2(n−t) θ · (−1)t.
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The left-hand side of the original equation is

n∑
t=0

(
2n+ 1

2t+ 1

)
xn−t · (−1)t.

Let x = cot2 θ, we have

sin(2n+ 1)θ

sin2n+1 θ
=

n∑
t=0

(
2n+ 1

2t+ 1

)
xn−t · (−1)t = 0.

Therefore, we have sin(2n+ 1)θ = 0, and hence (2n+ 1)θ = mπ for m ∈ Z.
To avoid duplicate solutions for x = cot2 θ, we restrict θ ∈

(
0, π

2

]
, and hence (2n + 1)θ ∈(

0,
(
n+ 1

2

)
π
]
, and hence m = 1, 2, . . . , n.

This solves to θ = mπ
2n+1 for m = 1, 2, . . . , n, and hence this gives exactly

x = cot2
(

mπ

2n+ 1

)
.

2. By Vieta’s Theorem, we will have

n∑
m=1

xm = −
−
(
2n+1

3

)(
2n+1

1

) =
(2n+ 1)(2n)(2n− 1)

(2n+ 1) · 3 · 2 · 1
=

n(2n− 1)

3
,

and since we have

xm = cot2
(

mπ

2n+ 1

)
,

we have
n∑

m=1

cot2
(

mπ

2n+ 1

)
=

n(2n− 1)

3
.

3. For 0 < θ < 1
2π, we have 0 < sin θ < θ < tan θ, and squaring this gives

0 < sin2 θ < θ2 < tan2 θ,

and flipping to the reciprocal gives

0 < cot2 θ <
1

θ2
< csc2 θ = 1 + cot2 θ,

which proves exactly what is desired.

Therefore, we have

n∑
m=1

cot2
(

mπ

2n+ 1

)
<

n∑
m=1

1(
mπ

2n+1

)2 <

n∑
m=1

[
1 + cot2

(
mπ

2n+ 1

)]
,

and hence
n(2n− 1)

3
<

n∑
m=1

(2n+ 1)2

m2π2
<

2n(n+ 1)

3
,

and hence
n(2n− 1)π2

3(2n+ 1)2
<

n∑
m=1

1

m2
<

2n(n+ 1)π2

3(2n+ 1)2
.

Take the limit as n → ∞, the strict inequalities become weak, and hence

lim
n→∞

n(2n− 1)π2

3(2n+ 1)2
≤

∞∑
m=1

1

m2
≤ lim

n→∞

2n(n+ 1)π2

3(2n+ 1)2
,
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and hence
2π2

3 · 22
≤

∞∑
m=1

1

m2
≤ 2nπ2

3 · 22
,

and therefore
π2

6
≤

∞∑
m=1

1

m2
≤ π2

6
,

and hence
∞∑

m=1

1

m2
=

π2

6
,

as desired.
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2018.3 Question 8

1. Using the substitution t = 1
x , we have

dt

dx
= − 1

x2
=⇒ dx = −x2 dt = −dt

t2
,

and when x → 0+, t → ∞, and when x = 1, t = 1. Hence,

I =

∫ 1

0

f(x−1)

1 + x
dx

=

∫ ∞

1

f(t)

1 + t−1
·
(
−dt

t2

)
=

∫ ∞

1

f(t) dt

t(1 + t)

=

∫ 2

1

f(t) dt

t(1 + t)
+

∫ 3

2

f(t) dt

t(1 + t)
+

∫ 4

3

f(t) dt

t(1 + t)
+ · · ·

=

∞∑
n=1

∫ n+1

n

f(t) dt

t(1 + t)
,

as desired.

Since f(x) = f(x+ 1) for all x, we must have that f(x) = f(x+ n) for all x and integers n. Also,
we have

1

y(1 + y)
=

1

y
− 1

1 + y
.

Hence,

I =

∞∑
n=1

∫ n+1

n

f(t) dt

t(1 + t)

=

∞∑
n=1

∫ 1

0

f(n+ t) dt

(n+ t)(n+ t+ 1)

=

∞∑
n=1

∫ 1

0

f(t) ·
[

1

n+ t
− 1

n+ t+ 1

]
dt

=

∞∑
n=1

∫ 1

0

f(t) dt

n+ t
−

∞∑
n=1

∫ 1

0

f(t) dt

n+ t+ 1

=

∞∑
n=1

∫ 1

0

f(t) dt

n+ t
−

∞∑
n=2

∫ 1

0

f(t) dt

n+ t

=

∫ 1

0

f(t) dt

1 + t
.

2. For the first integral, simply consider f(x) = {x}, and we can immediately see that f(x) has period
of 1 from the definition. Hence,∫ 1

0

{x−1}
1 + x

dx =

∫ 1

0

f(x−1)

1 + x
dx =

∫ 1

0

f(x)

1 + x
dx =

∫ 1

0

{x}
1 + x

dx.
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Since for 0 < x < 1, we have {x} = x, and hence∫ 1

0

{x−1}
1 + x

dx =

∫ 1

0

{x}
1 + x

dx

=

∫ 1

0

x

1 + x
dx

=

∫ 1

0

(
1− 1

1 + x

)
dx

= 1− [ln(1 + x)]
1
0

= 1− (ln(2)− ln(1))

= 1− ln 2.

For the second integral, we let g(x) = {2x}, and we can see that g(x) has a period of 1
2 , and hence

it also has a period of 1. Hence,∫ 1

0

{2x−1}
1 + x

dx =

∫ 1

0

g(x−1)

1 + x
dx =

∫ 1

0

g(x)

1 + x
dx =

∫ 1

0

{2x}
1 + x

dx.

We split this integral into two parts, [0, 0.5] and [0.5, 1].

∫ 1

0

{2x−1}
1 + x

dx =

∫ 1

0

{2x}
1 + x

dx

=

∫ 0.5

0

{2x}
1 + x

dx+

∫ 1

0.5

{2x}
1 + x

dx

=

∫ 0.5

0

2x

1 + x
dx+

∫ 1

0.5

2x− 1

1 + x
dx

=

∫ 0.5

0

[
2− 2

1 + x

]
dx+

∫ 1

0.5

[
2− 3

1 + x

]
dx

= 1− 2 [ln(1 + x)]
0.5
0 + 1− 3 [ln(1 + x)]

1
0.5

= 2− 2 ln 1.5 + 2 ln 1− 3 ln 2 + 3 ln 1.5

= 2− 3 ln 2 + ln 1.5

= 2− 3 ln 2 + ln 3− ln 2

= 2− 4 ln 2 + ln 3.
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2018.3 Question 12

1. P(Yk) ≤ y is the probability that there is at least k numbers that are less than equal to y.

If there are k ≤ m ≤ n numbers less than or equal to y, then there must be n−m numbers greater
than or equal to y. The probability of the first thing happening for each number is y, and for the
second thing happening for each number is 1 − y. We also have to choose m numbers from the n
to make them less than or equal to y. Therefore,

P(Yk ≤ y) =

n∑
m=k

(
n

m

)
ym(1− y)n−m.

2. We have

m

(
n

m

)
= m · n!

m!(n−m)!
=

n!

(m− 1)!(n−m)!
= n · (n− 1)!

(m− 1)!(n−m)!
= n

(
n− 1

m− 1

)
.

We have

(n−m)

(
n

m

)
= (n−m) · n!

m!(n−m)!
=

n!

m!(n−m− 1)!
= n · (n− 1)!

m!(n−m− 1)!
= n

(
n− 1

m

)
.

The cumulative distribution function FYk
is

FYk
(y) =

n∑
m=k

(
n

m

)
ym(1− y)n−m.

Therefore, the probability density function fYk
is

fYk
(y) = F ′

Yk
(y)

=

n∑
m=k

(
n

m

)[
mym−1(1− y)n−m − (n−m)ym(1− y)n−m−1

]
=

n∑
m=k

ym−1(1− y)n−m−1

[
m

(
n

m

)
(1− y)− (n−m)

(
n

m

)
y

]

= n

[
n∑

m=k

(
n− 1

m− 1

)
ym−1(1− y)n−m −

n−1∑
m=k

(
n− 1

m

)
ym(1− y)n−m−1

]

= n

[
n∑

m=k

(
n− 1

m− 1

)
ym−1(1− y)n−m −

n∑
m=k+1

(
n− 1

m− 1

)
ym−1(1− y)n−m

]

= n

(
n− 1

k − 1

)
yk−1(1− y)n−k.

Since Yk ∈ [0, 1], we must have ∫ 1

0

fYk
(y) dy = 1,

and hence

n

(
n− 1

k − 1

)∫ 1

0

yk−1(1− y)n−k dy = 1,

and therefore we have ∫ 1

0

yk−1(1− y)n−k dy =
1

n
(
n−1
k−1

) .
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3. By the definition of the expectation,

E(Yk) =

∫ 1

0

yfYk
(y) dy

= n

(
n− 1

k − 1

)∫ 1

0

yk(1− y)n−k dy

= n

(
n− 1

k − 1

)
· 1

(n+ 1)
(
n
k

)
=

n · (n−1)!
(k−1)!(n−k)!

(n+ 1) · n!
k!(n−k)!

=

n!
(k−1)!(n−k)!

(n+1)n!
k(k−1)!(n−k)!

=
k

n+ 1
.
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2018.3 Question 13

By the definition of a probability generating function, we have

G(1) =

∞∑
n=0

P(X = n), and G(−1) =

∞∑
n=0

(−1)n P(X = n).

Hence,

G(1) +G(−1) =

∞∑
n=0

[1 + (−1)n] P(X = n).

When n is odd, 1 + (−1)n = 0. When n is even, 1 + (−1)n = 2.
This means

G(1) +G(−1) = 2

∞∑
n=0

P(X = 2n),

which gives

1

2
(G(1) +G(−1)) =

∞∑
n=0

P(X = 2n) = P(X = 0 or X = 2 or X = 4 . . .).

Since X ∼ Po(λ), we have

P(X = x) = e−λλ
x

x!
,

and hence the probability generating function for X, G(t), must satisfy

G(t) =

∞∑
n=0

P(X = n) · tn

=

∞∑
n=0

e−λλ
n

n!
· tn

= e−λ
∞∑

n=0

(λt)n

n!

= e−λ · eλt

= e−λ(1−t).

1. Consider G(t) +G(−t). By definition, we have

G(t) =

∞∑
n=0

P(X = n)tn, G(−t) =

∞∑
n=0

(−1)n P(X = n)tn,

and hence

G(t) +G(−t) =

∞∑
n=0

(1 + (−1)n) P(X = n)tn = 2

∞∑
n=0

P(X = 2n)t2n.

Let H(t) be the probability generating function of Y , we have

H(t) =

∞∑
n=0

P(Y = n) · tn

=

∞∑
n=0

P(Y = 2n) · t2n

=

∞∑
n=0

kP(X = 2n) · t2n

=
k

2
(G(t) +G(−t)) .
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To find k, we must have H(1) = 1. Hence,

1 =
k

2
(G(1) +G(−1)) =

k

2

(
e−λ(1−1) + e−λ(1+1)

)
=

k

2

(
1 + e−2λ

)
,

which gives

k =
2

1 + e−2λ
=

2eλ

eλ + e−λ
=

eλ

coshλ
.

Hence,

H(t) =
k

2
(G(t) +G(−t))

=
eλ

2 coshλ

(
e−λ(1−t) + e−λ(1+t)

)
=

1

coshλ

eλt + e−λt

2

=
coshλt

coshλ
.

Differentiating this with respect to t, we have

H ′(t) =
λ sinhλt

coshλ
,

and hence

E(Y ) = H ′(1) =
λ sinhλ · 1
coshλ

= λ tanhλ.

Since −1 < tanhλ < 1, we have λ tanhλ < λ, and so E(Y ) < λ for λ > 0.

2. Consider G(t) +G(−t) +G(it) +G(−it). By definition, we have

G(t) +G(−t) +G(it) +G(−it) =

∞∑
n=0

(1 + (−1)n + in + (−i)n) P(X = n) · tn.

Let m be an integer. Consider the following four cases:

• n = 4m, 1 + (−1)n + in + (−i)n = 1 + 1 + 1 + 1 = 4.

• n = 4m+ 1, 1 + (−1)n + in + (−i)n = 1 + (−1) + i+ (−i) = 0.

• n = 4m+ 2, 1 + (−1)n + in + (−i)n = 1 + 1 + (−1) + (−1) = 0.

• n = 4m+ 3, 1 + (−1)n + in + (−i)n + 1 + (−1) + (−i) + i = 0.

Hence,

G(t) +G(−t) +G(it) +G(−it) = 4

∞∑
n=0

P(X = 4n) · t4n.

Let P (t) be the probability generating function of Z, we have

P (t) =

∞∑
n=0

P(Z = n) · tn

=

∞∑
n=0

P(Z = 4n) · t4n

= c

∞∑
n=0

P(X = 4n) · t4n

=
c

4
(G(t) +G(−t) +G(it) +G(−it)) .
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Since P (1) = 0, we must have

1 =
c

4
(G(1) +G(−1) +G(i) +G(−i))

=
c

4

(
e−λ(1−1) + e−λ(1+1) + e−λ(1−i) + e−λ(1+i)

)
=

ce−λ

4

(
eλ + e−λ + eiλ + e−iλ

)
=

ce−λ

2
(cosλ+ coshλ) .

Hence,

c =
2eλ

cosλ+ coshλ
.

Therefore,

P (t) =
c

4
(G(t) +G(−t) +G(it) +G(−it))

=
eλ

2(cosλ+ coshλ)

[
e−λ(1−t) + e−λ(1+t) + e−λ(1−it) + e−λ(1+it)

]
=

eλt + e−λt + eλit + e−λit

2(cosλ+ coshλ)

=
cosλt+ coshλt

cosλ+ coshλ
.

Differentiating this with respect to t gives us

P ′(t) =
λ(− sinλt+ sinhλt)

cosλ+ coshλ
,

and hence

E(Z) = P ′(1) =
λ(− sinλ+ sinhλ)

cosλ+ coshλ
.

E(Z) < λ is equivalent to
sinhλ− sinλ

coshλ+ cosλ
< 1,

which is then equivalent to
sinhλ− coshλ < sinλ+ cosλ,

which is
−e−λ < sinλ+ cosλ.

However, this is not necessarily true. Let λ = π. We have

LHS = −e−π > −e0 = −1,

and
RHS = sinπ + cosπ = −1,

which means LHS > RHS for λ = π, which means E(Z) > λ. Therefore, the statement is not true.
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