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2018.3 Question 1

1. By differentiation with respect to 3, we have
J'B) =145+ 35

If f'(t) = 0, we must have
t*+t+2=0.

Therefore,
t+1)E —t+2)=0,
and hence the only real root to this is t = —1, since (—1)? —2-4 < 0.
This means the only stationary point of y = f(5) is (-1, f(=1) = —1).
For the limiting behaviour of the function, we first look at the case where 5 > 0. As  — oo, we

have f(8) — 8 from below. As 8 — 0, we have f(3) — —% — % — —o0.

When B < 0, we use the substitution ¢t = —% to make the behaviours more convincing, and hence
fB)=pB+t—1%

As B — 07, we have t — oo, and f(B) — t —t> — —o0o. As B — —oo, we have t — 0T, and
f(B) — B from above, since t —t?> =¢t(1 —¢) > 0 when 0 < t < 1.

This means the curve y = f(3) is as below.
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Similarly, by differentiation with respect to 8, we have

3 2
g’(ﬁ)zl—ﬁﬁ-ﬁ.
If ¢’'(t) = 0, we must have
t*—3t+2=0.

Therefore,
(t—1)2(t+2) =0,
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and hence the real roots to thisist =1 and t = —2.

This means the stationary points of y = g(8) is (1,g(1) = 3) and (-2, g(—2) = —12).

For the limiting behaviour of the function, we first look at the case where 5 > 0. We consider the

substitution ¢ = —% to make the behaviours more convincing, and hence

9(B) =B —3t—t*,

As 8 — 00, t — 07, and hence f(3) — B from below, since —3t—t*> = —t(t+3) > 0 for =3 < ¢ < 0.
As B — 0T, t = —o0, and hence f(8) — —3t — > — —cc.

When < 0, we have as § — 07, f(8) = —oc0. As f — —o0, f(B8) — B from below.

This means the curve y = g(5) is as below.

and
1 U+ v @
-+ —4uv = +uv=——+4 0.
u B
3. By the given condition, we have

+ 1 — 1+ !
—a+ - =- o= —=.
B B
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Hence,

%—i-f—&—uv:—%-kﬂ

14+ 1
:—;5+5
i

B
1 1
TE e

= f(B).

Also, since u,v are both real, we have

1 2
a245<1+> —4p

B
2 1
:1+B+@—45
AP+ B +26+1
- >
> 0.

Multiplying both sides by —3? (which flips the sign) gives

483 — 2 —28-1<0
(B—1)(4B*+33+1) <0.

This cubic has exactly one real root 5 = 1, so the solution to this inequality is 5 < 1 and 8 # 0.

Notice that f is increasing on (0,1] C (0,00). Therefore, for 5 > 0,
fB)<f)=1-1-1=-1

When 3 < 0, we have
f(B) < f(-1)=-1.

So for the range of 8 in this question, we always have f(8) < —1. But we also have %—i— % H+uv < —1

as shown before. These gives us exactly our desired statement.

. By the given condition, we have

1 1
—a+ =3 &= a=-3+ .

B B

Hence,

1 1 «
—+-tuw=—-—+p
U v

B
_ 343
= — B _|_5
3 1
Pt
=9(B).

Also, since u,v are both real, we have § < 1 and § # 0 as well.

g must be increasing on (0, 1]. Hence, for 8 > 0, we have

g(B) < g(1) =3.
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When g < 0, we have

Since 3 > f%, we can conclude that the maximum value of % + % + uw is 3, and it is taken when
8 =1, which corresponds to @ = —2.
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2018.3 Question 2
1. Notice that

dx dx
di gqry 1 d¥z
— (—1)” ¢ 42 L Y
dx dz™ =z dx

(1) 2z d"z 1 d"z
o z daz™  z dazntl
1 n 1 n+1
nid ol _ (_1)n,+17d ol
z dzm z dgntl

= 2xy, — Yn+1,

=2z-(-1)

as desired.

2. We first look at the base case where n = 1. What is desired is

Y2 = 221 — 2%0.

We have yo = 1,
1 de_gc2 2 .2
Y= (_1)1€,7W =—e" (“2z)e”" =2z,
and d
y2:2xy1—ﬂ:2m~2x—2:4x2—2.
dx
Hence,

2wy — 2o = 2x - 2o — 2 -1 — 4z — 2 =y,
so the base case is satisfied.
Now assume this is true for some n =k > 1, i.e.

Yet1 = 22Yx — 2kYr—1.

We have
d
Yk+2 = 20Yp+1 — ydk;l
d(2 — 2ky;—
P ( fﬂykd Yk—1)
T
d dyj_
= 20Yk+1 — 2yk — 2xﬂ + 2k Ye—1
dz dx

= 20Ypr1 — 2y — 22(20Yr — Yrt1) + 2k(22YR—1 — Yr)
= 20ypy1 — 2yk — 422y + 20ypg + dkayp_ 1 — 2k
= dzypq1 — 2(22% + k + D)yy, + 4kzyp_

2 _
= 4wy — 2 2% + k + Vyg + 4k - %

(
= daypi1 — 2227 + k + Dy + 22220y — Yrt1)
= 2zyp+1 — 2(k + 1ys,

which is exactly the statement for n =k + 1.
Hence, by the principle of mathematical induction, we have y,,+1 = 22y, — 2ny,—1 for all n > 1.
We have
LHS = y721+1 — YnYn+2
= Yni1 = Yn(20Ynt1 — 2(n + 1)yn)
= y72L+1 = 22YnYnt1 + 2(” =+ l)yi
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and
RHS = 2n(y2 — Yn—1Yn+1) + 2y2

2x — 1
=2n (yi - S ynH) + 2y,

= 2nyi - (2$yn - yn+1) Yn+1 + 2y72L
= 2ny2 — 22y Ynt1 + Y21 + 292
= Y2 11 — 20YnYnt1 + 2(n + 1)y2.

3. This can be shown by induction on n. The base case for n =1 is
v —yoy2 = (22)% —1- (422 —2) =2 >0
is true.
Now assume the statement is true for n =k > 1, i.e.
Yi = Yr—1Yk41 > 0.

We have

Yer1 — UkUkt2 = 2n(Yp — Yr—1yk + 1) + 292
>2n-0+y2
=0+ ny
>0,

which is the statement for n = k + 1.

Hence, by the principle of mathematical induction, we have y2 — 1y, _19n+1 > 0 for all n > 1.
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2018.3 Question 3
Notice that
x“(xb(xcy)’)’ — LL’a(.’Iib(C(EC_ly =+ xcy/))/
— xa I:xb-‘rc—l (Cy + xy/)]l
— Jia [(b teo— 1)xb+c72 (cy —|—xy') +xb+c—1 (cy’ + y/ + xy”)]
=22 (bt e~ 1) (cy +ay’) F ey +y +ay”)]
= @02 (220 4 (b+ 2)ay’ + (b+c— 1)ey] .
Comparing this with the left-hand side of the original equation, we must have
a+b+c—2=0,
b+2c=1-2p,
(b+c—1)c=p* ¢

The second equation gives
b=1-2p—2c,

and putting this into the third equation gives

(1—2p—2c+c—1)c=p*—¢,

and hence
4+ 2pc+p? —# =0.
This gives
(c+P—a)lc+(p+q) =0,
and hence

€L =—-p+q,c2=—p—gq.
Putting this back, we get
by =1-2p—2(—p+q) =1-2¢,by=1-2p—2(-p—¢q) =1+2g,
and since a = 2 — b — ¢ from the first equation, we have
a=2-(1-2¢)—(-p+q)=1+p+g

and
az=2-(1+29)—(-p—q)=1+p—q

Hence, the solutions are

a=ptqg+l,
b=F2q+1,
c=—-p=xq.

1. In the case where f(z) = 0. We must have
x® (xb(xcy)')/ =0,
and hence
(:cb(:ncy)/)' =0.
Therefore, we must have by integration
2P (z%) = Cy
for some (real) constant Cj.

Hence,
(z°y) = CLz~°.

There are two cases here:
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(a) When b = 1 ie. ¢ = 0, the right-hand side is C;z~!, and the left-hand side is (z°y)’.
Integrating both sides give
zy =Cilnx + Co
for some (real) constant Cs.
Hence,
y=a °(Cilnz + Cy)
for some (real) constants Cp, Co.
When ¢ =0, ¢ = —p, and hence

y=aP(Cylnx + Cy).
(b) When b # 1 i.e. ¢ # 0, integrating both sides give

—b+1
c C’lx

Y= +Co

for some (real) constant Cs.
Hence,

C —b+1
y=a ¢ (1§+ 1 + CQ)

for some (real) constant C1, Co.
Hence,

— p—(-p%aq) Cra (Pt + C
v —(F2q+1)+1 " 7

Clxj:2q
— PFq

Cq
— PG 4 o T
:|:2qx + Caz

— Cgmpiq + CoxP T,
for some (real) constant Cy, Cs.

2. This is when ¢ = 0 and f(z) = 2™. We have a = p+ 1,b = 1 and ¢ = —p, and the original
differential equation reduces to

LPt1 (gg (x—py)’), -y
and hence ,

(m (xfpy)/) =g Pl
There are two cases here:

(a) If n—p—1=—1, i.e. n =p, we have, by integration,

x (x*py)/ =lnz+ Cy.

This gives
1 C
(x—Py)/ — mr + 71’
x T
and hence by integration
1 2
x Py = ( n;) + Cilnx + Cs.
This solves to )
P(1
Yy = riny) (;x) + C1aP Inx + CoxP.
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(b) If n—p—1%# —1, i.e. n# p, we have

—p /: x
v () = 2
This gives
n—p—1
(l‘,py)/ - x + Cl'

Since n —p — 1 # —1, by integration we have

—p " P
x Py = 4444—§'+>Cﬁlnﬂf+’6&,

(n—p)

and hence

— t CizPInz + CoxP.
D
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2018.3 Question 4

The hyperbola has parametric equation

T = asech,
y=btané.
Hence, by differentiation, we have

d
dy _ @

dzx
dzx S

bsec? 6

asecHtan6
bcos

asin 6 cos 6
b

asing’

The tangent to the hyperbola at P will be

b
asinf

y—btanfd = (z — asech),

which simplifies to
aysinf — abtan @ sin @ = bx — absecd,

and hence
bx — aysin = ab(secf — tan fsin §).

Notice that
1 —sin?6 B cos? 6

cosf cos

sec —tanfsinf = = cos ¥,
and so the equation of the tangent is
bxr — aysin @ = abcos b,
exactly as desired.
1. Let £ = ¥ = 5 for S, we have x = as and y = bs, and hence
abs — abssin = abcos b,
which gives
cos 6
§=—,
1—siné

cos 0 cos 0
s (al —sin@’bl —sin9> '

Let 2 = —4 =t for T', we have x = at and y = —bt, and hence

and hence

abt + abt sin @ = abcosb,
which gives
_ cosf
"~ 1+sin6’

7(a COS'O - 005'9 .
1+ siné 1+sinf

t

and hence
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We have
a1iossir?0+a% __acosd 1 1
2 2 <1sin9+ 1+sin0>
__acosf 2
T2 (M)
_a
~ cosf
= asec,
and
ar*By — bigay bcos 6 1 1
1—siné 1+sinf
2 2 (1—sin9_ 1—|—sin0>

B bcosO [2sin6
) cos? 0
bsin @

cos 0
= btan@.

This means the midpoint of ST is (asec,btan @), which is exactly P.

2. Since the tangents are perpendicular, that means

dy| dy
dr|, dw|,” "
and hence
b _ b _ 1
asinf asing ’
which means
b2 = —a®sinfsin .

The two tangents are

bxr — aysinf = abcos
and

bx — aysin = abcos .
Since bx = bz, we have

aysin @ + abcos € = aysin ¢ + abcos p,
and hence
y(sin @ — sin ) = b(cos ¢ — cos ),
which gives
cos ¢ — cosf

sinf) — sinp
Hence,

__abcosf + aysinf
b
(bcos@—i—bsin@

a

b

cos ¢ — cos
sin @ — sin

- 0
=a (cosﬁ + sin GWC()S)

sin @ — sin ¢

cos O(sin 6 — sin ) + sin #(cos ¢ — cos h)

=a - -
sinf — sin @

sin 6 cos ¢ — cos fsin

sinf — sin @
sin(6 — ¢)
sinf — sinp’
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This means

2 2 Sin2(9 — )
—g2. YTy

(sin @ — sin 50)2

2 2
g2 o2 PO i (89— C00)

(sin @ — sin p) (sinf — sin )

Notice that
a® —b* = a® 4 a?sinfsin p = a*(1 + sinfsin ).

Hence,
.2 2
sin“ (6 — cos ¢ — cosf
P +y?=a’ —.m ( - g0)2 —sin9s1n<p-—( - L - )2
(sin @ — sin ) (sin @ — sin )
a2

= TR {sinQ(G — ) — sinfsin p (cos ¢ — cos 9)2} .
inf — si
What is desired is to show
(1 + sin@sin ¢)(sin 6 — sin )2 = sin?(0 — o) — sin O sin ¢ (cos @ — cos ) .

We have

RHS = (sin # cos ¢ — cos §sin¢)? — sin 6 sin p(cos? ¢ 4 cos? § — 2 cos ¢ cos 0)
= sin A cos? ¢ + cos? O sin® p — 2sin O cos O sin ¢ cos @
— sin @ sin ¢ cos® ¢ — sin §sin ¢ cos® @ + 2 sin § cos f sin @ cos @
= sin 6 cos? p(sin 6 — sin ) + cos® O sin p(sin ¢ — sin 0)

= (sin @ cos® p — cos? B sin ) (sin § — sin ).

Therefore, what is left to prove is that
(14 sin@sin ) (sin @ — sin ) = sin 6 cos® p — cos? fsin @

Notice that

LHS = sinf — sin ¢ + sin? §sin ¢ — sin @ sin” o
= sin (1 — sin” ) — sin (1 — sin? §)
= sinf cos® ¢ — sin @ cos®
= RHS.

This shows that

1

(ind —sin )2 sin?(f — @) — sinfsin ¢ (cos p — cos )| = 1 + sin fsin ¢,

and hence
x2+y2:a2—b2,

as desired.
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2018.3 Question 5

1.

3.

First, we notice that
k+1

k+1 _ _ k
Gk+1 = H ay = ak+1Gk,

t=1
and hence L
k\ %

Gk+1 = (ak_;,_le) 1

Similarly, notice that
k+1

(k + l)Ak+1 = Z at = Ag4+1 + kAy.

t=1
Hence,
(k+1) (Ary1 — Grr1) > k(Ax — Gi) s
Ap+1 + /fAk - (k + ].) (akHG’,j)m 2 kak - ka,

1k
k1 + kG > (k+ Da T GF

Dividing both sides by G}, we have

_1 _1
—“g“ k> (h+1)af Gy,
k

=
/\Z-i-l k> (k—l— 1) (ak-‘rl) :
Gy

MFL k> (K + 1),
ML — (k+ 1)\, +k >0,

as desired. (Notice that the condition for the equal sign is equivalent as well.)

. By differentiation, we have

@)= (k+DaX — (k+1) = (k+1)(z* - 1).

When z € (0,1),2% € (0,1), f/(z) < 0, and hence f is strictly decreasing.
When 2 € (1,00),2% € (1,00), f'(x) > 0, and hence f is strictly increasing.

Hence, f(1) is the minimum for f on (0,00). This means for all x € (0, 00), we have
f@)>f()=1""" —(k+1)+ k=0,
taking the equal sign if and only if x = 1.

(a) We show this by induction. For the base case n = 1, A; = G1 = a1, so naturally A, > G, is
satisfied.

Assume that the statement holds for some n = k, i.e. Ay > Gy, A — G > 0. Since k > 0 as
well, we must have
(k+1)(Aks1 — Grr1) = k(Ar — Gx) > 0.

We also have k + 1 > 0, and hence
Aps1 —Gry1 20 = Ap1 > G,

meaning the statement holds for n = k + 1 as well.
Hence, by the principle of mathematical induction, we must have A,, > G, for all n € N,
which finishes our proof.
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(b) We show this by induction. For the base case n = 1, this condition is naturally satisfied.

Assume that the statement holds for some n =k, i.e. A, =G — a1 =ax =--- = a;. We
show this for n = k 4+ 1. If Ax41 = Gi41, then we must have

k(Ax — Gy) < (k+1)(Agy1 — Gry1) =0,

but since Ay > Gy, we must have then Ap = Gy, and hence the equal sign in the inequality
being taken.

This must mean that

and hence
ag4+1 = Gk.
At the same time, since Ay = G, we must have a; = as = --- = ax, and hence G = a1 =
as = - -+ = ap. Therefore, we must also have
ap =az == ap = Qk+1,
which proves the statement that Ai;; = Gg4q implies a; = ag = -+ = ap = agy1, which is

the original statement for n = k + 1.
Hence, by the principle of mathematical induction, we must have A4,, = G,, implies a; = as =
-+ = ay for all n € N, which finishes our proof.
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2018.3 Question 6
1. Since A, @, C lie on a straight line, AQ = AAC for some A € R. This means

q_a:A(C_a)v

and hence
q—a
c—a

=X eR,

as required.

Hence, we must have

g—a _(q—a\" ¢ —a
c—a \c—a) ¢ —a*
Cross-multiplying the terms out give

(c—a)(g" —a’) = (" —a”)(q—a)

exactly as desired.

Substituting in a* = 1/a and ¢* = 1/¢, we have

e-a(r-1)=(t-1) -0

and expanding the brackets gives

c a
cq*—aq*—f—kl:g—f—g—i—l,
a c ¢ a
and hence
* * Ciq a q
cgf —aqgt ——=-=-——— = .
a ¢ ¢ a

Multiplying by ac on both sides gives us

ac’q* — a’cq* — ® = aq — a® — g,

and hence

aclc —a)q* = (a —c)qg— (a®* = *) = (a — ¢)g — (a — ¢)(a + ¢).

We can divide through (a — ¢) on both sides since a # ¢. Hence,
0=gq—(a+c)+acq”,
and hence
ac¢* +qg=a-+c,
as desired.

. By part 1, we must have
acqg* +q=a+cbdg* +q=>b+d.

Since ¢ = ¢q, we have

acq® — (a+c¢) = bdqg" — (b+d),
and rearranging gives

(ac - bd)g" = (a+c) — (b+d),
exactly as desired.

We also have ¢* = ¢*, and hence
at+c—q b+d—gq
ac  bd

which gives
(bd)(a +c—q) = (ac)(b+d - q),
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and rearranging gives
(ac — bd)q = ac(b+ d) — bd(a + ¢).

Summing this with previously, we have

(ac —bd)(q+ q*) = (a+¢) — (b+d) + ac(b+ d) — bd(a + ¢).

We notice that

(a+¢c)—(b+d)+ac(b+d)—bd(a+c)=a+c—b—d+ abc+ acd — abd — bed
=a—b+acd — bcd + ¢ — d + abc — abd
=(a—b)(1+cd)+ (c—d)(1+ ab),

and hence
(ac —bd)(q+ q*) = (a — b)(1 + cd) + (c — d)(1 + ab),
exactly as desired.

3. By part 1, we must have
p+abp® =a+b.

Since p is real, p = p*, and hence
(1+ab)p=a+b,
as desired.

Similarly, we must have
(I1+cd)g=c+d,

and putting this back into the result from part 2, we have

(a=b)(c+d) , (c—d)atb)

(ac —bd)(q+q") = ) )

)

and hence since ac — bd # 0, we have

(a=b)(c+d)+ (c—d)(a+D)

pla+q°) = e bd
__ac+ad—bc—bd+ ac+bc—ad—bd
B ac — bd
_ 2ac —2bd
- ac—bd
=2,

as desired.
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2018.3 Question 7

1. We have
(cot @ + )2+t — (cot § — i)2n+!
2
(cos @ + isin0)*" T — (cos — isin §)2nH1
B 2isin*" ™ 0
_ (cos(2n +1)0 +isin(2n + 1)f) — (cos(2n + 1)0 — isin(2n + 1)0)
a 2isin®" ¢
~ 2isin(2n +1)0
~ 2isin®" g
_ sin(2n +1)0
~ sin®tlg
as desired.

By applying the binomial expansion formula on the numerator, we have

(cot @ + )" 1 — (cot @ — i) F!

2n+1 2n+1
2 1 2 1
= Z ( n: )cottG-iQ”Ht — Z ( n: )cottﬁ- (—i)?nrit

t=0 t=0
2n+1
2 1
_ Z ( nt—|— ) cott 8 - |:Z-2n+17t _ (_i)2n+1—t]
t=0

2n+1
(—1)" i Z (2n+ 1) cot' @i " [1—(=1)'""].

t=0 t

Due to the existence of the final term, this means that only terms with even ¢ will retain (give a
2), and odd ¢s will cancel. Hence,

(cot 6 +1)?" 1 — (cot  — )2+

2n+1

— i 3 (et
(

) cot? .72

t=0
" 2n+1
= 2i(~1)" L) ot (<1
2t
t=0
o n - 2TL+]. 2t t
= 2i(=1) 'Z<2n—2t+1) 0 (=1)
t=0
n & 2n+1 n— n—
= 2i(—1) .Z(2t+1>0t2( t)g.( 1)t
t=0
" 2n+1 o
=2 2= 9. (—1)!
! ;(215—#1)00 (=1)

Hence,
sin(2n 4+ 1)0
sin?"*1 g

_ 2310, (2;;111) cot?=1 g . (1)t
2i

= <2n * 1) cot?™=t 9. (1)
t=0

2t+1
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The left-hand side of the original equation is
"\ 2n+1
Z (272 +1>$n_t . (_1)1‘,_
t=0 +
Let z = cot?f, we have

_ n—t -1 t:O.
2+l g 2t+1>x (1)

sin(2n +1)0 = (2n+1
Sin P

Therefore, we have sin(2n + 1)8 = 0, and hence (2n 4 1)0 = mx for m € Z.

To avoid duplicate solutions for z = cot?6, we restrict 6 € (0, %], and hence (2n + 1)0 €
(O,(n—i—%)?r], and hence m =1,2,...,n.

This solves to 0 = for m =1,2,...,n, and hence this gives exactly

x = cot? mr .
2n+1

2n+1

2. By Vieta’s Theorem, we will have

" =YY @nenEn)@n—1)  n(2n—1)
ZI’"__(%Fl) - (@2n+1)-3-2.1 3 7

m=1

and since we have

we have

3. For 0 <6 < %w, we have 0 < sinf < 0 < tan#, and squaring this gives
0 < sin?6 < 62 < tan? 6,

and flipping to the reciprocal gives

1
0<cot29<0—2<csc 0 =1+ cot?#,

which proves exactly what is desired.

Therefore, we have

n n
1
E cot? < — < 1 4 cot? mr ,
2n +1 z l(mﬁ> ‘ 2n + 1

=\ 2n+1 m=
and hence
2n—1) &K @2n+1)2  2n(n+1)
3 < mZ:1 m2m2 3 ’
and hence

n(2n — 1)72 "1 2n(n + 1)

32n+ 17 2 m? " 3En+ 12

Take the limit as n — oo, the strict inequalities become weak, and hence

2n — )7 1 2 172
lim (n § 7§ imM
n—oo 3(2n+1)2 T L= m2 T nooo 3(2n + 1)2
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and hence

and therefore

and hence

as desired.

o2 <1 2nm?
< — <
2 > 1 2
7<§ =<
6 _m:1m2 - 6’
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2018.3 Question 8

1. Using the substitution ¢ = =, we have
dt 1 9
W= a2 = dor=—zx°dt = —

and when z — 0%, ¢t — oo, and when = = 1, t = 1. Hence,
1 e 1
[,
0o 1+=
[
)y 14ttt t2
(t)dt

< f

1

/OIO:Eth/f /

B n+1 f(
_Zl/n t(1+1)’

n=

as desired.

dt
th’

f(t)dt
t(1+t)

Since f(z) = f(x + 1) for all z, we must have that f(x) = f(z +n) for all z and integers n. Also,

we have
1 1 1

y1+y) y 1+y

Hence,

fn+t)dt
n+t Y(n+t+1)

3 HM8 HM8

n+1
/ 1+t

_ / 1
- n+t n+t

OO

\

nl

f

ol
t)dt Z/
n+t+1

/ n+t

2. For the first integral, simply consider f(z) = {z}, and we can immediately see that f(z) has period

of 1 from the definition. Hence,

R C0 S L (o W Al 1

0 1+-T 0 1"‘33 0 1+JU

0
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Since for 0 < x < 1, we have {z} = z, and hence

1 —1 1
RECS PP B ) S

1
:/ Y e
o 1+=x
[ (-5
= 1—
0 1+

)dx
=1—[In(1+2))}

=1-(In(2) —In(1))
=1—1In2.

For the second integral, we let g(x) = {2z}, and we can see that g(x) has a period of %7 and hence
it also has a period of 1. Hence,

1 o1 1o -1 1 1 (o
/‘{w }dx:/°9® )dx:/’gwﬂdm: {22}
o l+w o 1+=z o 1+=z o 1+z

We split this integral into two parts, [0,0.5] and [0.5, 1].

[ e [ 22
/0591} RRC
0

d
1+ZC zt 0‘51"'.’1}

0.5 1
2 20 — 1
:/ x dx—l—/ v dz
0 1+:C 0.5 1+:C
0.5 1
2
:/ [2—}dx+/ [2—3 }dx
0 1+J) 0.5 1+3;‘

=1-2[n(1+2)]5° +1—3[n(1 + )]
=2-2In15+2In1—3In2+3Inl5
=2-3In2+Inl5
=2—-3In2+1n3—-1n2
=2-4In2+1n3.
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2018.3 Question 12
1. P(Y%) <y is the probability that there is at least k numbers that are less than equal to y.

If there are k < m < n numbers less than or equal to y, then there must be n —m numbers greater
than or equal to y. The probability of the first thing happening for each number is y, and for the
second thing happening for each number is 1 — y. We also have to choose m numbers from the n
to make them less than or equal to y. Therefore,

P(Yy <y) = i (Z) y" (1 —y)"

m=k

2. We have

m@) - m!(nn! m)l — (m— 1>7<!n —m)l " (m (713!_(71)! m)l ”(Z_ll)'

(n—m) (Z) = (n—m). m!(nni s TRaiTen T o m!(r(zn—_w?i 0 n<n”_1 1)'

The cumulative distribution function Fy, is

n

Fy,(y) =) (Z)ym(l — ),

m=k

Therefore, the probability density function fy, is

m=k m
=S () - o))
=n [LZ:; (:; 11> vy :g (n 1) y™(1 y)”‘m‘ll
=n Li:k (ZL__D Yy 1 -y — m_;l (:1__11) y™ (1 y)”""}

Since Y}, € [0, 1], we must have

1
/ Fro()dy =1,
0

n—1 g —k
1—y)" =1
n<k_1>/0 y -yt dy =1,

1
/ Yyl —y) Ry =
0

and hence

and therefore we have

n(h 7))
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3. By the definition of the expectation,

E(Y;) = / yfv, (v) dy

n—1 ! k n—k
—n(k_l)/o Yy (I—y)"dy

=(i21) wrom
(n—1)!

N o DI(n—Fk)!
(n+1) et

n!
(k=D (n—k)!
- (n+1)n!

k(k—1D)!(n—k)!
k
S on41
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2018.3 Question 13

By the definition of a probability generating function, we have

o0

ZP , and G(—1) = > (~1)"P(X =n).

n=0

Hence,
G)+G(-1) =Y [1+(-1)"|P(X =n).
n=0

When n is odd, 1 4+ (—1)" = 0. When n is even, 1+ (—1)" = 2.

This means
o0

G(1)+G(-1) =2 P(X =2n),

which gives

%(G(l)—l—G(—l)):iP(X:%”L):P(X:Ooer2orX=4....

Since X ~ Po()), we have

I
mI
>
\M8
2|Z
3

_ A1-t)

1. Consider G(t) + G(—t). By definition, we have

ZP =n)t", G(—t) = Y _(-=1)"P(X =n)t",
n=0
and hence -
Gt)+G(—t) =Y (14 (-1)")P(X = _2ZP =2n
n=0

Let H(t) be the probability generating function of ¥, we have

(t) = ZP(Y:
_ZP t2n
7ZkP =2n) - "

n=0

= 26+ o).

2",
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To find k, we must have H(1) = 1. Hence,

k k k
1=2(G1)+G(-1)) == (e_)‘(l_l) + e_’\(1+1)) =S (e,
2 2 2
which gives
b 2 - 2¢e* - e
T 14e 2 edder  cosh)’
Hence,
k
H(t) = 5 (G(t) + G(-1))
_ oA (G,A(yt) n e”\(lﬂ))
2 cosh A
1 e)\t +6—At
- cosh A 2
_cosh At
" cosh )\’

Differentiating this with respect to ¢, we have

Asinh At
H(t) = ———
®) cosh X ’
and hence Ssighi - 1
_ ey Asinh A1
EY)=H'(1) = “eosh Atanh .

Since —1 < tanh A < 1, we have Atanh A < A, and so E(Y) < X for A > 0.
2. Consider G(t) + G(—t) + G(it) + G(—it). By definition, we have

G(t) + G(—t) + G(it) + G(—it) = i (14 (=)™ +i" 4 (—)")P(X =n) - t".

n=0
Let m be an integer. Consider the following four cases:

en=4dm, 1+ (-1)"+i"+(—-i)"=1+1+14+1=4.

en=4dm+1, 1+ (=1)"+i" + (=i)" =1+ (=1)+i+ (—i) = 0.
en=4m+2, 14+ (=1)" +i" 4+ (=i)" =1+ 1+ (1) +(-1) = 0.
en=4dm+3, 1+ (-1)"+i"+(=i)" + 1+ (=1) + (=) +i=0.
Hence,
G(t) + G(—t) + G(it) + G(—it) =4 Y P(X =4n) - t*".
n=0

Let P(t) be the probability generating function of Z, we have
P(t)=> P(Z=n)-t"
n=0

= iP(Z:ALn) - in

n=0
- Ci P(X = 4n) - t*"
n=0
- 2 (G(t) + G(—t) + G(it) + G(—it)) .
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Since P(1) = 0, we must have

1= (G(1) +G(-1) + G(i) + G(~i))

(e—,\(1—1) 4o M+ 4 =A(1-d) +e—>\(1+i))

ef/\ . .
= T( )\+67/\+6M+671/\)

-

SN e~ oY

)

(cos A+ cosh A).

Hence,
2e*
cos A + cosh A’

Therefore,

P(t) = S (G(t) + G(—t) + G(it) + G(—it))

>0

A
_ € —A(1—t) —A(14t) —A(1—it) —A(l-&-it)}
2(cos A + cosh \) [ te te te

M 1 et 1 gAit | oAt
2(cos A + cosh \)
_ cos At + cosh At
~ cosA+cosh A’

Differentiating this with respect to t gives us

A(—sin At + sinh At
Pi(t) = ( cos A +—Zosh)\ )’
and hence - , A(—sin A + sinh \)
(2)=P(1) = cosA+coshA
E(Z) < ) is equivalent to
sinh A — sin A

—_—— <1,
cosh A + cos A

which is then equivalent to
sinh A — cosh A < sin A + cos A,

which is
—e N < sin A+ cos \.

However, this is not necessarily true. Let A = m. We have
LHS = —¢ ™ > —¢ = —1,

and
RHS =sin7 + cosm = —1,

which means LHS > RHS for A = 7, which means E(Z) > A. Therefore, the statement is not true.
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