2017 Paper 3

2017.3.1	Question 1																			31
2017.3.2	Question 2																			33
2017.3.3	Question 3																			34
2017.3.4	Question 4																			35
2017.3.5	Question 5																			37
2017.3.6	Question 6																			39
2017.3.7	Question 7																			42
2017.3.8	Question 8																			45
2017.3.12	Question 12																			47
2017.3.13	Question 13																			49

Eason Shao Page 30 of 50

2017.3 Question 1

1. We have

RHS =
$$\frac{r+1}{r} \left(\frac{1}{\binom{n+r-1}{r}} - \frac{1}{\binom{n+r}{r}} \right)$$

= $\frac{r+1}{r} \left(\frac{r!(n-1)!}{(n+r-1)!} - \frac{r!n!}{(n+r)!} \right)$
= $\frac{r+1}{r} \left(\frac{r!(n-1)!(n+r)}{(n+r)!} - \frac{r!(n-1)!n}{(n+r)!} \right)$
= $\frac{r+1}{r} \cdot \frac{r!(n-1)!(n+r) - r!(n-1)!n}{(n+r)!}$
= $\frac{r+1}{r} \cdot \frac{r!(n-1)!r}{(n+r)!}$
= $\frac{(r+1)!(n-1)!}{(n+r)!}$
= $\binom{n+r}{r+1}$
= LHS

as desired.

Therefore,

$$\sum_{n=1}^{+\infty} \frac{1}{\binom{n+r}{r+1}} = \sum_{n=1}^{+\infty} \frac{r+1}{r} \left(\frac{1}{\binom{n+r-1}{r}} - \frac{1}{\binom{n+r}{r}} \right)$$

$$= \frac{r+1}{r} \sum_{n=1}^{+\infty} \left(\frac{1}{\binom{n+r-1}{r}} - \frac{1}{\binom{n+r}{r}} \right)$$

$$= \frac{r+1}{r} \left[\sum_{n=0}^{+\infty} \frac{1}{\binom{n+r}{r}} - \sum_{n=1}^{+\infty} \frac{1}{\binom{n+r}{r}} \right]$$

$$= \frac{r+1}{r} \frac{1}{\binom{0+r}{r}}$$

$$= \frac{r+1}{r},$$

assuming the sum converges.

When r = 2, we have

$$\sum_{n=1}^{+\infty} \frac{1}{\binom{n+2}{3}} = \frac{3}{2}.$$

When n = 1, $\frac{1}{\binom{1+2}{3}} = \frac{1}{1} = 1$.

Therefore,

$$\sum_{n=2}^{+\infty} \frac{1}{\binom{n+2}{3}} = \frac{1}{2}$$

as desired.

2. Notice that

$$\frac{3!}{n^3} < \frac{1}{\binom{n+1}{3}} \iff \frac{3!}{n^3} < \frac{3!}{(n+1)n(n-1)}$$
$$\iff n^3 > (n+1)n(n-1)$$
$$\iff n^3 > n(n^2 - 1)$$
$$\iff n^3 > n^3 - n$$
$$\iff n > 0,$$

Eason Shao Page 31 of 50

which is true.

Also, notice that

$$\begin{split} \frac{20}{\binom{n+1}{3}} - \frac{1}{\binom{n+2}{5}} < \frac{5!}{n^3} &\iff \frac{5!}{(n+1)(n)(n-1)} - \frac{5!}{(n+2)(n+1)(n)(n-1)(n-2)} < \frac{5!}{n^3} \\ &\iff \frac{(n+2)(n-2)-1}{(n+2)(n+1)(n)(n-1)(n-2)} < \frac{1}{n^3} \\ &\iff (n^2-5)n^3 < (n^2-4)(n^2-1)n \\ &\iff n^5-5n^3 < n^5-5n^3+4n \\ &\iff 4n>0, \end{split}$$

which is true.

Therefore, we have that

$$\sum_{n=3}^{+\infty} \frac{3!}{n^3} < \sum_{n=3}^{+\infty} \frac{1}{\binom{n+1}{3}}$$
$$= \sum_{n=2}^{+\infty} \frac{1}{\binom{n+2}{3}}$$
$$= \frac{1}{2},$$

and therefore $\sum_{n=3}^{+\infty} \frac{1}{n^3} < \frac{1}{12}$, and $\sum_{n=1}^{+\infty} \frac{1}{n^3} < 1 + \frac{1}{8} + \frac{1}{12} = \frac{29}{24} = \frac{116}{96}$. On the other hand, we have

$$\sum_{n=3}^{+\infty} \frac{5!}{n^3} < \sum_{n=3}^{+\infty} \left[\frac{20}{\binom{n+1}{3}} - \frac{1}{\binom{n+2}{5}} \right]$$

$$= 20 \sum_{n=2}^{+\infty} \frac{1}{\binom{n+2}{3}} - \sum_{n=1}^{+\infty} \frac{1}{\binom{n+4}{5}}$$

$$= 20 \cdot \frac{1}{2} - \frac{5}{4}$$

$$= 10 - \frac{5}{4}$$

$$= \frac{35}{4},$$

and therefore $\sum_{n=3}^{+\infty} \frac{1}{n^3} > \frac{7}{96}$, and $\sum_{n=1}^{+\infty} \frac{1}{n^3} > 1 + \frac{1}{8} + \frac{7}{96} = \frac{115}{96}$. Hence,

$$\frac{115}{96} < \sum_{n=1}^{+\infty} \frac{1}{n^3} < \frac{116}{96}$$

as desired.

Eason Shao Page 32 of 50

2017.3 Question 2

1. Let the complex number representing R(P) be z'. Therefore,

$$z' - a = \exp(i\theta)(z - a),$$

$$z' = z \exp(i\theta) + a(1 - \exp(i\theta)),$$

as desired.

2. Let the complex number representing SR(P) be z''. Therefore,

$$z'' - b = \exp(i\varphi)(z' - b),$$

$$z'' = z' \exp(i\varphi) + b(1 - \exp(i\varphi)),$$

$$z'' = [z \exp(i\theta) + a(1 - \exp(i\theta))] \exp(i\varphi) + b(1 - \exp(i\varphi)),$$

$$z'' = z \exp(i(\theta + \varphi)) + a(1 - \exp(i\theta)) \exp(i\varphi) + b(1 - \exp(i\varphi)).$$

This will be an anti-clockwise rotation around c over an angle of $(\theta + \varphi)$, where

$$c\left[1 - \exp(i(\theta + \varphi))\right] = a\exp(i\varphi) - a\exp(i(\theta + \varphi)) + b - b\exp(i\varphi),$$

If $\theta + \varphi = 2n\pi$ for some integer $n \in \mathbb{Z}$, $1 - \exp(i(\theta + \varphi)) = 0$, therefore c cannot be determined. Multiplying both sides by $\exp\left(-\frac{i(\theta + \varphi)}{2}\right)$, we have

$$c\left[\exp\left(-\frac{i(\theta+\varphi)}{2}\right) - \exp\left(\frac{i(\theta+\varphi)}{2}\right)\right]$$

$$= a\left[\exp\left(\frac{i(\varphi-\theta)}{2}\right) - \exp\left(\frac{i(\theta+\varphi)}{2}\right)\right] + b\left[\exp\left(-\frac{i(\theta+\varphi)}{2}\right) - \exp\left(\frac{i(\varphi-\theta)}{2}\right)\right],$$

and hence

$$-2ci\sin\left(\frac{\theta+\varphi}{2}\right) = -2ai\exp\left(\frac{i\varphi}{2}\right)\sin\left(\frac{\theta}{2}\right) - 2bi\exp\left(-\frac{i\theta}{2}\right)\sin\left(\frac{\varphi}{2}\right),$$
$$c\sin\left(\frac{\theta+\varphi}{2}\right) = a\exp\left(\frac{i\varphi}{2}\right)\sin\left(\frac{\theta}{2}\right) + b\exp\left(-\frac{i\theta}{2}\right)\sin\left(\frac{\varphi}{2}\right).$$

If $\theta + \varphi = 2\pi$, we will have $z'' = z + a \exp(i\varphi) - a + b(1 - \exp(i\varphi)) = z + (b - a)(1 - \exp(i\varphi))$, which is a translation by $(b - a)(1 - \exp(i\varphi))$.

3. If RS = SR, then we have

$$\begin{split} a(1-\exp(i\theta))\exp(i\varphi) + b(1-\exp(i\varphi)) &= b(1-\exp(i\varphi))\exp(i\theta) + a(1-\exp(i\theta)), \\ a(-1+\exp(i\varphi) + \exp(i\theta) - \exp(i(\theta+\varphi))) &= b(-1+\exp(i\varphi) + \exp(i\theta) - \exp(i(\theta+\varphi))), \\ (a-b)(1-\exp(i\varphi))(1-\exp(i\theta)) &= 0. \end{split}$$

Therefore, a = b, or $\varphi = 2n\pi$, or $\theta = 2n\pi$, for some integer $n \in \mathbb{Z}$.

Eason Shao Page 33 of 50

2017.3 Question 3

By Vieta's Theorem, from the quartic equation in x, we have

$$\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = q$$

and from the cubic equation in y, we have

$$(\alpha\beta + \gamma\delta) + (\alpha\gamma + \beta\delta) + (\alpha\delta + \beta\gamma) = -A.$$

Therefore, A = -q.

1. Since (p, q, r, s) = (0, 3, -6, 10), the cubic equation is reduced to

$$y^3 - 3y^2 - 10y + 84 = 0,$$

and therefore

$$(y-2)(y-7)(y+6) = 0.$$

Therefore, $y_1 = 7, y_2 = 2, y_3 = -6, \text{ and } \alpha\beta + \gamma\delta = 7.$

2. We have

$$(\alpha + \beta)(\gamma + \delta) = \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta$$

$$= (\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta) - (\alpha\beta + \gamma\delta)$$

$$= q - 7$$

$$= 3 - 7$$

$$= -4$$

By Vieta's Theorem, we have $\alpha\beta\gamma\delta = s = 10$. Therefore, $\alpha\beta$ and $\gamma\delta$ must be roots to the equation

$$x^2 - 7x + 10 = 0.$$

The two roots are x=2 and x=5, and therefore $\alpha\beta=5$.

3. We have from the other root that $\gamma \delta = 2$.

We notice that $(\alpha + \beta) + (\gamma + \delta) = -p = 0$. Therefore, from part 2, $(\alpha + \beta)$ and $(\gamma + \delta)$ are roots to the equation

$$x^2 - 4 = 0$$
.

This gives us $\alpha + \beta = \pm 2$ and $\gamma + \delta = \mp 2$.

Using the value of r and Vieta's Theorem, we have

$$\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -r = 6.$$

Plugging in $\alpha\beta = 5$ and $\gamma\delta = 2$, we have

$$5(\gamma + \delta) + 2(\alpha + \beta) = 6.$$

Therefore, it must be the case that $\alpha + \beta = -2$ and $\gamma + \delta = 2$.

Hence, using the values of $\alpha\beta$ and $\gamma\delta$, α and β are solutions to the quadratic equation $x^2+2x+5=0$, and γ and δ are solutions to the quadratic equation $x^2-2x+2=0$.

Solving this gives us $\alpha, \beta = -1 \pm 2i$ and $\gamma, \delta = 1 \pm i$. The solutions to the original quartic equation is

$$x_{1,2} = -1 \pm 2i, x_{3,4} = 1 \pm i.$$

Eason Shao Page 34 of 50

2017.3 Question 4

1. Notice that $a = e^{\ln a}$ and hence $a^x = e^{x \ln a}$, $a^{\frac{x}{\ln a}} = e^x$ we have

$$\begin{split} F(y) &= \exp\left(\frac{1}{y} \int_0^y \ln f(x) \, \mathrm{d}x\right) \\ &= a^{\frac{1}{y \ln a} \cdot \int_0^y \ln f(x) \, \mathrm{d}x} \\ &= a^{\frac{1}{y} \cdot \int_0^y \frac{\ln f(x)}{\ln a} \, \mathrm{d}x} \\ &= a^{\frac{1}{y} \cdot \int_0^y \log_a f(x) \, \mathrm{d}x} \end{split}$$

as desired.

2. We have

$$\begin{split} H(y) &= \exp\left(\frac{1}{y} \int_0^y \ln f(x) g(x) \, \mathrm{d}x\right) \\ &= \exp\left[\frac{1}{y} \int_0^y \left(\ln f(x) + \ln g(x)\right) \, \mathrm{d}x\right] \\ &= \exp\left[\frac{1}{y} \left(\int_0^y \ln f(x) \, \mathrm{d}x + \int_0^y \ln g(x) \, \mathrm{d}x\right)\right] \\ &= \exp\left(\frac{1}{y} \int_0^y \ln f(x) \, \mathrm{d}x\right) \cdot \exp\left(\frac{1}{y} \int_0^y \ln g(x) \, \mathrm{d}x\right) \\ &= F(y) \cdot G(y). \end{split}$$

3. Let $f(x) = b^x$.

$$F(y) = \exp\left(\frac{1}{y} \int_0^y \ln f(x) \, \mathrm{d}x\right)$$

$$= b^{\frac{1}{y}} \int_0^y \log_b f(x) \, \mathrm{d}x$$

$$= b^{\frac{1}{y}} \int_0^y \log_b b^x \, \mathrm{d}x$$

$$= b^{\frac{1}{y}} \int_0^y x \, \mathrm{d}x$$

$$= b^{\frac{1}{y}} \int_0^y x \, \mathrm{d}x$$

$$= b^{\frac{1}{y} \cdot \frac{y^2}{2}}$$

$$= b^{\frac{y}{2}}$$

$$= \sqrt{b^y}.$$

4. Since $F(y) = \sqrt{f(y)}$, we notice that $f(y) = F(y)^2 = \exp\left(\frac{2}{y}\int_0^y \ln f(x) \, \mathrm{d}x\right)$, and therefore $\ln f(y) = \frac{2}{y}\int_0^y \ln f(x) \, \mathrm{d}x$.

We substitute $g(y) = \ln f(y)$, and therefore

$$yg(y) = 2\int_0^y g(y) \, \mathrm{d}x.$$

Therefore, differentiating both sides with respect to y gives us

$$yg'(y) + g(y) = 2g(y),$$

and therefore

$$-g(y) + yg'(y) = 0.$$

Multiplying y^{-2} on both sides gives us

$$-y^{-2}g(y) + y^{-1}g'(y) = 0,$$

and therefore

$$\frac{\mathrm{d}}{\mathrm{d}y} \frac{g(y)}{y} = 0,$$

Eason Shao Page 35 of 50

and therefore

$$\frac{g(y)}{y} = C \implies g(y) = Cy.$$

Therefore, we have

$$f(y) = \exp g(y)$$
$$= \exp(Cy)$$
$$- b^{y}$$

if we substitute $b = \exp(C) > 0$, and therefore $f(x) = b^y$ as desired.

Eason Shao Page 36 of 50

2017.3 Question 5

Since we have $x = r \cos \theta$ and $y = r \sin \theta$, and $r = f(\theta)$, we have

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{\mathrm{d}r}{\mathrm{d}\theta} \cdot \cos\theta + r \cdot \frac{\mathrm{d}\cos\theta}{\mathrm{d}\theta}$$
$$= f'(\theta)\cos\theta - f(\theta)\sin\theta$$

and

$$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \frac{\mathrm{d}r}{\mathrm{d}\theta} \cdot \sin\theta + r \cdot \frac{\mathrm{d}\sin\theta}{\mathrm{d}\theta}$$
$$= f'(\theta)\sin\theta + f(\theta)\cos\theta,$$

Therefore,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

$$= \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$

$$= \frac{f'(\theta)\tan\theta + f(\theta)}{f'(\theta) - f(\theta)\tan\theta}.$$

For the two curves, we must have

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_f \cdot \frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_q = -1$$

for them to meet at right angles. Therefore,

$$\frac{f'(\theta)\tan\theta + f(\theta)}{f'(\theta) - f(\theta)\tan\theta} \cdot \frac{g'(\theta)\tan\theta + g(\theta)}{g'(\theta) - g(\theta)\tan\theta} = -1$$

$$(f'(\theta)\tan\theta + f(\theta)) \cdot (g'(\theta)\tan\theta + g(\theta)) = -(f'(\theta) - f(\theta)\tan\theta) \cdot (g'(\theta) - g(\theta)\tan\theta)$$

$$f'(\theta)g'(\theta)(1 + \tan^2\theta) + f(\theta)g(\theta)(1 + \tan^2\theta) = 0$$

$$f'(\theta)g'(\theta) + f(\theta)g(\theta) = 0.$$

We have $f\left(-\frac{\pi}{2}\right) = 4$. Let

$$g_a(\theta) = a(1 + \sin \theta).$$

Therefore,

$$g_a'(\theta) = a\cos\theta,$$

and we have

$$f'(\theta)(a\cos\theta) + f(\theta)a(1+\sin\theta) = 0,$$

and therefore

$$\frac{\mathrm{d}f(\theta)}{\mathrm{d}\theta}\cos\theta = -f(\theta)(1+\sin\theta).$$

By separating variables we have

$$\frac{\mathrm{d}f(\theta)}{f(\theta)} = -\frac{\mathrm{d}\theta(1+\sin\theta)}{\cos\theta}.$$

Notice that

$$-\frac{1+\sin\theta}{\cos\theta} = -\frac{(1-\sin\theta)(1+\sin\theta)}{(1-\sin\theta)\cos\theta} = -\frac{\cos\theta}{1-\sin\theta} = \frac{\cos\theta}{\sin\theta-1},$$

integrating both sides gives us

$$\ln f(\theta) = \ln |\sin \theta - 1| + C = \ln (1 - \sin \theta) + C,$$

which gives

$$f(\theta) = A(1 - \sin \theta).$$

Since $f\left(-\frac{\pi}{2}\right) = 4$, we have 2A = 4 and A = 2, therefore $f(\theta) = 2(1 - \sin \theta)$.

Eason Shao Page 37 of 50

Eason Shao Page 38 of 50

2017.3 Question 6

1. Consider the substitution $u = \frac{1}{v}$.

When $u \to 0^+$, $v \to +\infty$.

When u = x, $v = \frac{1}{x}$.

We also have

$$\mathrm{d}u = -\frac{1}{v^2}\,\mathrm{d}v.$$

Therefore,

$$T(x) = \int_0^x \frac{\mathrm{d}u}{1+u^2}$$

$$= \int_{+\infty}^{\frac{1}{x}} -\frac{1}{v^2} \cdot \frac{1}{1+\frac{1}{v^2}} \, \mathrm{d}v$$

$$= \int_{\frac{1}{x}}^{+\infty} \frac{\mathrm{d}v}{1+v^2}$$

$$= \int_0^{+\infty} \frac{\mathrm{d}v}{1+v^2} - \int_0^{\frac{1}{x}} \frac{\mathrm{d}v}{1+v^2}$$

$$= T_{\infty} - T(x^{-1}),$$

as desired.

2. When $u \neq a^{-1}$, we have

$$\frac{dv}{du} = \frac{d}{du} \frac{u+a}{1-au}$$

$$= \frac{1 \cdot (1-au) + a \cdot (u+a)}{(1-au)^2}$$

$$= \frac{1-au+au+a^2}{(1-au)^2}$$

$$= \frac{1+a^2}{(1-au)^2}.$$

Also, notice that

$$\begin{split} \frac{1+v^2}{1+u^2} &= \frac{1+\left(\frac{u+a}{1-au}\right)^2}{1+u^2} \\ &= \frac{(1-au)^2+(u+a)^2}{(1+u^2)(1-au)^2} \\ &= \frac{1-2au+a^2u^2+u^2+2au+a^2}{(1+u^2)(1-au)^2} \\ &= \frac{(1+a^2)(1+u^2)}{(1-au)^2(1+u^2)} \\ &= \frac{1+a^2}{(1-au)^2}. \end{split}$$

Therefore, $\frac{dv}{du} = \frac{1+v^2}{1+u^2}$ as desired.

Eason Shao Page 39 of 50

Consider the substitution $v = \frac{u+a}{1-au}$. When u = 0, v = a. When u = x, $v = \frac{x+a}{1-ax}$. Therefore,

$$\begin{split} T(x) &= \int_0^x \frac{\mathrm{d}u}{1+u^2} \\ &= \int_a^{\frac{x+a}{1-ax}} \frac{1+u^2}{1+v^2} \cdot \frac{\mathrm{d}v}{1+u^2} \\ &= \int_a^{\frac{x+a}{1-ax}} \frac{\mathrm{d}v}{1+v^2} \\ &= \int_0^{\frac{x+a}{1-ax}} \frac{\mathrm{d}v}{1+v^2} - \int_0^a \frac{\mathrm{d}v}{1+v^2} \\ &= T\left(\frac{x+a}{1-ax}\right) - T(a), \end{split}$$

as desired.

If we substitute $T(x) = T_{\infty} - T(x^{-1})$ and $T(a) = T_{\infty} - T(a^{-1})$, we can see that

$$T(x) = T\left(\frac{x+a}{1-ax}\right) - T(a)$$

$$T_{\infty} - T(x^{-1}) = T\left(\frac{x+a}{1-ax}\right) - \left[T_{\infty} - T(a^{-1})\right]$$

$$T(x^{-1}) = 2T_{\infty} - T\left(\frac{x+a}{1-ax}\right) - T(a^{-1}),$$

as desired.

Now, let $y = x^{-1}$ and $b = a^{-1}$. Then

$$\frac{x+a}{1-ax} = \frac{y^{-1} + b^{-1}}{1 - b^{-1}y^{-1}}$$
$$= \frac{b+y}{by-1}.$$

This gives us

$$T(y) = 2T_{\infty} - T\left(\frac{b+y}{by-1}\right) - T(b),$$

as desired.

3. Let $y=b=\sqrt{3}$. We can easily verify that b>0 and $y>\frac{1}{b}$. Therefore,

$$T(\sqrt{3}) = 2T_{\infty} - T\left(\frac{\sqrt{3} + \sqrt{3}}{3 - 1}\right) - T(\sqrt{3}),$$

which simplified, gives us $T(\sqrt{3}) = \frac{2}{3}T_{\infty}$ as desired.

In $T(x) = T\left(\frac{x+a}{1-ax}\right) - T(a)$, let $x = a = \sqrt{2} - 1$, we can verify that a > 0 and $x < \frac{1}{a}$, therefore we have

$$\begin{split} T(\sqrt{2}-1) &= T\left(\frac{(\sqrt{2}-1)+(\sqrt{2}-1)}{1-(\sqrt{2}-1)\cdot(\sqrt{2}-1)}\right) - T(\sqrt{2}-1),\\ T(\sqrt{2}-1) &= T\left(\frac{2\sqrt{2}-2}{1-\left(2+1-2\sqrt{2}\right)}\right) - T(\sqrt{2}-1),\\ T(\sqrt{2}-1) &= T\left(\frac{2\sqrt{2}-2}{2\sqrt{2}-2}\right) - T(\sqrt{2}-1),\\ 2T(\sqrt{2}-1) &= T(1). \end{split}$$

Eason Shao Page 40 of 50

In
$$T(x) = T_{\infty} - T(x^{-1})$$
, let $x = 1$. We have

$$T(1) = T_{\infty} - T(1),$$

$$2T(1) = T_{\infty}.$$

Therefore, $T(\sqrt{2}-1) = \frac{1}{4}T_{\infty}$, as desired.

Eason Shao Page 41 of 50

2017.3 Question 7

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \left(\frac{1-t^2}{1+t^2}\right)^2 + \left(\frac{2t}{1+t^2}\right)^2$$

$$= \frac{\left(1-t^2\right)^2 + \left(2t\right)^2}{\left(1+t^2\right)^2}$$

$$= \frac{1-2t^2+t^4+4t^2}{\left(1+t^2\right)^2}$$

$$= \frac{1+2t^2+t^4}{\left(1+t^2\right)^2}$$

$$= \frac{\left(1+t^2\right)^2}{\left(1+t^2\right)^2}$$

$$= 1$$

as desired, so T lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

1. The gradient of L must satisfy that

$$\begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y/\,\mathrm{d}t}{\mathrm{d}x/\,\mathrm{d}t} \\ &= \frac{b}{a} \cdot \frac{\mathrm{d}\left(2t/(1+t^2)\right)/\,\mathrm{d}t}{\mathrm{d}\left((1-t^2)/(1+t^2)\right)/\,\mathrm{d}t} \\ &= \frac{b}{a} \cdot \frac{2\cdot(1+t^2)-2t\cdot2t}{-2t\cdot(1+t^2)-(1-t^2)\cdot2t} \\ &= \frac{b}{a} \cdot \frac{2+2t^2-4t^2}{-2t-2t^3-2t+2t^3} \\ &= \frac{b}{a} \cdot \frac{1-t^2}{-2t}. \end{aligned}$$

Therefore, we have a general point $(X,Y) \in L$ satisfy that

$$Y - \frac{2bt}{1+t^2} = \frac{b}{a} \cdot \frac{1-t^2}{-2t} \cdot \left(X - \frac{a(1-t^2)}{1+t^2}\right)$$

$$(1+t^2)Y - 2bt = \frac{b}{a} \cdot \frac{1-t^2}{-2t} \cdot \left((1+t^2)X - a(1-t^2)\right)$$

$$(-2at)(1+t^2)Y - (-2at)(2bt) = b \cdot (1-t^2) \cdot \left((1+t^2)X - a(1-t^2)\right)$$

$$(-2at)(1+t^2)Y = b(1-t^2)(1+t^2)X - ab(1-t^2)^2 - 4abt^2$$

$$(-2at)(1+t^2)Y = b(1-t^2)(1+t^2)X - ab(1+t^2)^2$$

$$-2atY = b(1-t^2)X - ab(1+t^2)$$

$$ab(1+t^2) - 2atY - b(1-t^2)X = 0$$

$$(a+X)bt^2 - 2aYt + b(a-X) = 0$$

as desired.

Now if we fix X, Y and solve for t, there are two solutions to this quadratic equation exactly when

$$(2aY)^{2} - 4(a+X)b \cdot b(a-X) > 0$$
$$(aY)^{2} - (a+X)(a-X)b^{2} > 0$$
$$a^{2}Y^{2} > (a^{2} - X^{2})b^{2},$$

which corresponds to two distinct points on the ellipse.

Eason Shao Page 42 of 50

Since $a^2Y^2 > (a^2 - X^2)b^2$, we have $\frac{Y^2}{b^2} > 1 - \frac{X^2}{a^2}$ by dividing through a^2b^2 on both sides, i.e.

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} > 1,$$

which means when the point (X,Y) lies outside the ellipse.

This also holds when $X^2 = a^2$, i.e. when the point (X,Y) lies on the pair of lines $X = \pm A$. Here, the condition is simply $a^2Y^2 > 0$, which gives $Y \neq 0$. One of the tangents will be the vertical line $X = \pm A$ (whichever one the point lies on), and the other one as a non-vertical (as shown when X = a, the tangents being L_1 and L_2).

2. By Vieta's Theorem, we have

$$pq = \frac{b(a-X)}{b(a+X)} \implies (a+X)pq = a-X,$$

as desired, and

$$p + q = -\frac{-2aY}{(a+X)b} = \frac{2aY}{(a+X)b}.$$

Let X = 0 for the equation in L,

$$abt^{2} - 2aYt + ba = 0$$

$$bt^{2} - 2Yt + b = 0$$

$$Y = \frac{b(1+t^{2})}{2t}.$$

Therefore,

$$y_1 + y_2 = \frac{b(1+p^2)}{2p} + \frac{b(1+q^2)}{2q}$$
$$= \frac{b[(1+p^2)q + (1+q^2)p]}{2pq}$$
$$= 2b.$$

therefore we have

$$4pq = (1+p^2)q + (1+q^2)p = (p+q)(1+pq).$$

Eason Shao Page 43 of 50

Therefore,

$$4 \cdot \frac{a-X}{a+X} = \frac{2aY}{(a+X)b} \cdot \frac{2a}{a+X}$$
$$a-X = \frac{a^2Y}{b(a+X)}$$
$$(a-X)(a+X)b = a^2Y$$
$$(a^2-X^2)b = a^2Y$$
$$1 - \frac{X^2}{a^2} = \frac{Y}{b}$$
$$\frac{X^2}{a^2} + \frac{Y}{b} = 1,$$

as desired.

Eason Shao Page 44 of 50

2017.3 Question 8

We have

$$\begin{split} \sum_{m=1}^{n} a_m (b_{m+1} - b_m) &= \sum_{m=1}^{n} a_m b_{m+1} - \sum_{m=1}^{n} a_m b_m \\ &= -\sum_{m=0}^{n-1} b_{m+1} a_{m+1} + \sum_{m=1}^{n} b_{m+1} a_m \\ &= -\sum_{m=1}^{n} b_{m+1} a_{m+1} + \sum_{m=1}^{n} b_{m+1} a_m + a_{n+1} b_{n+1} - a_1 b_1 \\ &= a_{n+1} b_{n+1} - a_1 b_1 - \sum_{m=1}^{n} b_{m+1} (a_{m+1} - a_m), \end{split}$$

as desired.

1. Let $a_m = 1$. On one hand, we have

$$\sum_{m=1}^{n} a_m (b_{m+1} - b_m) = \sum_{m=1}^{n} \left[\sin(m+1)x - \sin mx \right]$$

$$= \sum_{m=1}^{n} 2 \cos \left(\frac{(m+1)x + mx}{2} \right) \sin \left(\frac{(m+1)x - mx}{2} \right)$$

$$= 2 \sum_{m=1}^{n} \cos \left(m + \frac{1}{2} \right) x \sin \frac{x}{2}$$

$$= 2 \sin \frac{x}{2} \sum_{m=1}^{n} \cos \left(m + \frac{1}{2} \right) x.$$

On the other hand, we have

$$\sum_{m=1}^{n} a_m (b_{m+1} - b_m) = a_{n+1} b_{n+1} - a_1 b_1 - \sum_{m=1}^{n} b_{m+1} (a_{m+1} - a_m)$$
$$= \sin(n+1)x - \sin x.$$

Therefore, by rearranging, we have

$$\sum_{m=1}^{n} \cos\left(m + \frac{1}{2}\right) x = \frac{1}{2} \left[\sin(n+1)x - \sin x\right] \csc \frac{1}{2} x$$

as desired.

2. Let $a_m = m$, and let $b_m = \cos\left(m - \frac{1}{2}\right)x$. We have the identity

$$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right).$$

Therefore, we have

$$\sum_{m=1}^{n} a_m (b_{m+1} - b_m) = \sum_{m=1}^{n} m \cdot \left[\cos \left(m + \frac{1}{2} \right) x - \cos \left(m - \frac{1}{2} \right) x \right]$$
$$= \sum_{m=1}^{n} -2m \sin mx \sin \frac{1}{2} x$$
$$= -2 \sin \frac{1}{2} x \sum_{m=1}^{n} m \sin mx,$$

Eason Shao Page 45 of 50

and

$$\sum_{m=1}^{n} a_m (b_{m+1} - b_m)$$

$$= a_{n+1} b_{n+1} - a_1 b_1 - \sum_{m=1}^{n} b_{m+1} (a_{m+1} - a_m)$$

$$= (n+1) \cos \left(n + \frac{1}{2}\right) x - 1 \cdot \cos \frac{1}{2} x - \sum_{m=1}^{n} \cos \left(m + \frac{1}{2}\right) x \cdot 1$$

$$= (n+1) \cos \left(n + \frac{1}{2}\right) x - \cos \frac{1}{2} x - \sum_{m=1}^{n} \cos \left(m + \frac{1}{2}\right) x$$

$$= (n+1) \cos \left(n + \frac{1}{2}\right) x - \cos \frac{1}{2} x - \frac{1}{2} \left(\sin(n+1)x - \sin x\right) \csc \frac{1}{2} x$$

$$= \frac{1}{2} \csc \frac{1}{2} x \left[2(n+1) \cos \left(n + \frac{1}{2}\right) x \sin \frac{1}{2} x - 2 \cos \frac{1}{2} x \sin \frac{1}{2} x - (\sin(n+1)x - \sin x)\right]$$

$$= \frac{1}{2} \csc \frac{1}{2} x \left[n \sin(n+1)x - \sin nx\right].$$

Therefore, we have

$$-2\sin\frac{1}{2}x\sum_{m=1}^{n}m\sin mx = \frac{1}{2}\csc\frac{1}{2}x\left[n\sin(n+1)x - (n+1)\sin nx\right]$$
$$\sum_{m=1}^{n}m\sin mx = -\frac{1}{4}\csc^{2}\frac{1}{2}x\left[n\sin(n+1)x - (n+1)\sin nx\right],$$

and therefore, $p = -\frac{1}{4}n$, $q = \frac{1}{4}(n+1)$.

Eason Shao Page 46 of 50

2017.3 Question 12

1. First, note that

$$1 = \sum_{x,y=1}^{x=n} P(X = x, Y = y)$$

$$= \sum_{x=1}^{n} \sum_{y=1}^{n} k(x+y)$$

$$= \sum_{x=1}^{n} \sum_{y=1}^{n} (kx + ky)$$

$$= \sum_{x=1}^{n} \left(n \cdot kx + k \sum_{y=1}^{n} y \right)$$

$$= nk \sum_{x=1}^{n} x + nk \sum_{y=1}^{n} y$$

$$= n^{2}(n+1)k$$

Therefore, $k = \frac{1}{n^2(n+1)}$

$$P(X = x) = \sum_{y=1}^{n} P(X = x, Y = y)$$

$$= \sum_{y=1}^{n} k(x + y)$$

$$= nkx + k \sum_{y=1}^{n} y$$

$$= nkx + \frac{kn(n+1)}{2}$$

$$= \frac{x}{n(n+1)} + \frac{1}{2n}$$

$$= \frac{2x + n + 1}{2n(n+1)},$$

as desired.

By symmetry, $P(Y = y) = \frac{2y+n+1}{2n(n+1)}$.

We have

$$P(X = x) \cdot P(Y = y) = \frac{(2x + n + 1)(2y + n + 1)}{4n^2(n + 1)^2}.$$

But $P(X = x, Y = y) = \frac{x+y}{n^2(n+1)}$ is not equal to this. So X and Y are not independent.

2. By definition,

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

Eason Shao Page 47 of 50

We have

$$E(X) = E(Y) = \sum_{t=1}^{n} t \cdot P(X = t)$$

$$= \sum_{t=1}^{n} \frac{t \cdot (2t + n + 1)}{2n(n+1)}$$

$$= \frac{1}{n(n+1)} \sum_{t=1}^{n} t^2 + \frac{1}{2n} \sum_{t=1}^{n} t$$

$$= \frac{n(n+1)(2n+1)}{6n(n+1)} + \frac{n(n+1)}{4n}$$

$$= \frac{2n+1}{6} + \frac{n+1}{4}$$

$$= \frac{4n+2+3n+3}{12}$$

$$= \frac{7n+5}{12},$$

and

$$\begin{split} \mathbf{E}(XY) &= \sum_{x,y=1}^{n} xy \cdot \mathbf{P}(X=x,Y=y) \\ &= \sum_{x=1}^{n} \sum_{y=1}^{n} \frac{xy(x+y)}{n^2(n+1)} \\ &= \frac{1}{n^2(n+1)} \sum_{x=1}^{n} \sum_{y=1}^{n} xy(x+y) \\ &= \frac{1}{n^2(n+1)} \sum_{x=1}^{n} \sum_{y=1}^{n} (x^2y + xy^2) \\ &= \frac{1}{n^2(n+1)} \left[\sum_{x=1}^{n} x^2 \sum_{y=1}^{n} y + \sum_{x=1}^{n} x \sum_{y=1}^{n} y^2 \right] \\ &= \frac{1}{n^2(n+1)} \cdot 2 \cdot \frac{n(n+1)(2n+1)}{6} \cdot \frac{n(n+1)}{2} \\ &= \frac{(2n+1)(n+1)}{6}. \end{split}$$

Therefore,

$$\begin{aligned} \operatorname{Cov}(X,Y) &= \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y) \\ &= \frac{(2n+1)(n+1)}{6} - \frac{(7n+5)^2}{144} \\ &= \frac{48n^2 + 72n + 24}{144} - \frac{49n^2 + 70n + 25}{144} \\ &= \frac{-n^2 + 2n - 1}{144} \\ &= -\frac{(n-1)^2}{144} \\ &< 0, \end{aligned}$$

as desired.

Eason Shao Page 48 of 50

2017.3 Question 13

We have

$$V(x) = E[(X - x)^{2}]$$

$$= E(X^{2} - 2xX + x^{2})$$

$$= E(X^{2}) - 2x E(X) + x^{2}$$

$$= \sigma^{2} + \mu^{2} - 2x\mu + x^{2}.$$

Therefore, if Y = V(X), then

$$\begin{split} \mathbf{E}(Y) &= \mathbf{E}(V(X)) \\ &= \mathbf{E}(\sigma^2 + \mu^2 - 2X\mu + X^2) \\ &= \sigma^2 + \mu^2 - 2\mu \, \mathbf{E}(X) + \mathbf{E}(X^2) \\ &= \sigma^2 + \mu^2 - 2\mu^2 + \mu^2 + \sigma^2 \\ &= 2\sigma^2 \end{split}$$

Let $X \sim U[0,1]$, we have $\mu = E(X) = \frac{1}{2}$, and $\sigma^2 = Var(X) = \frac{1}{12}$. Therefore,

$$V(x) = \frac{1}{12} + \frac{1}{4} - x + x^{2}$$
$$= x^{2} - x + \frac{1}{3}.$$

The c.d.f. of X is F, defined as

$$P(X \le x) = F(x) = \begin{cases} 0, & x \le 0, \\ x, & 0 < x \le 1, \\ 1, & 1 < x \end{cases}$$

Let the c.d.f. of Y be G, we have $G(y)=\mathrm{P}(Y\leq y)$. Since $V([0,1])=\left[\frac{1}{12},\frac{1}{3}\right]$, we must have G(y)=0 for $y\leq\frac{1}{12}$ and G(y)=1 for $y>\frac{1}{3}$. For $y\in\left(\frac{1}{12},\frac{1}{3}\right]$, we have

$$\begin{split} G(y) &= \mathrm{P}(Y \leq y) = \mathrm{P}(V(X) \leq y) \\ &= \mathrm{P}\left(\left(x - \frac{1}{2}\right)^2 + \frac{1}{12} \leq y\right) \\ &= \mathrm{P}\left(\left|x - \frac{1}{2}\right| \leq \sqrt{y - \frac{1}{12}}\right) \\ &= \mathrm{P}\left(\frac{1}{2} - \sqrt{y - \frac{1}{12}} \leq x \leq \frac{1}{2} + \sqrt{y - \frac{1}{12}}\right) \\ &= F\left(\frac{1}{2} + \sqrt{y - \frac{1}{12}}\right) - F\left(\frac{1}{2} - \sqrt{y - \frac{1}{12}}\right) \\ &= \left(\frac{1}{2} + \sqrt{y - \frac{1}{12}}\right) - \left(\frac{1}{2} - \sqrt{y - \frac{1}{12}}\right) \\ &= 2\sqrt{y - \frac{1}{12}}. \end{split}$$

Therefore, the p.d.f. of $y,\,g$ satisfies that for $y\in\left(\frac{1}{12},\frac{1}{3}\right],$

$$g(y) = G'(y) = \frac{1}{\sqrt{y - \frac{1}{12}}}$$

and 0 everywhere else.

Eason Shao Page 49 of 50