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2017.2 Question 1

1. Using integration by parts, we notice that

(n+ 1)In = (n+ 1)

∫ 1

0

xn arctanxdx

=

∫ 1

0

arctanx dxn+1

=
[
arctanx · xn+1

]1
0
−
∫ 1

0

xn+1 d arctanx

= arctan 1 · 1n+1 − arctan 0 · 0n+1 −
∫ 1

0

xn+1

1 + x2
dx

=
π

4
−
∫ 1

0

xn+1

1 + x2
dx.

Set n = 0, and we have

I0 = (0 + 1)I0

=
π

4
−
∫ 1

0

x

1 + x2
dx

=
π

4
− 1

2
·
[
ln(1 + x2)

]1
0

=
π

4
− 1

2
· [ln 2− ln 1]

=
π

4
− ln 2

2
.

2. Using the result in the previous part,

(n+ 3)In+2 + (n+ 1)In =

(
π

4
−
∫ 1

0

xn+3

1 + x2
dx

)
+

(
π

4
−
∫ 1

0

xn+1

1 + x2
dx

)
=

π

2
−
∫ 1

0

xn+1 + xn+3

1 + x2
dx

=
π

2
−
∫ 1

0

xn+1
(
1 + x2

)
1 + x2

dx

=
π

2
−
∫ 1

0

xn+1 dx

=
π

2
− 1

n+ 2

[
xn+2

]1
0

=
π

2
− 1

n+ 2
.

Letting n = 0, and we have

3I2 + I0 =
π

2
− 1

2
.

Letting n = 2, and we have

5I4 + 3I2 =
π

2
− 1

4
.

Subtracting the first one from the second one, and hence

5I4 − I0 =
1

4
.

Hence,

I4 =
1

5
·
[
1

4
+

(
π

4
− ln 2

2

)]
=

1

20
+

π

20
− ln 2

10
.
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3. Let n = 1, and the statement says

(4n+ 1)I4n = 5I4

= A− 1

2

2·1∑
r=1

(−1)r
1

r

= A− 1

2

(
−1

1
+

1

2

)
= A+

1

4
.

Comparing to the previous expression, we claim that

A =
π

4
− ln 2

2
.

This shows the base case for n = 1. For the induction step, we first introduce a lemma. Since

(n+ 5)In+4 + (n+ 3)In+2 =
π

2
− 1

n+ 4
, (n+ 3)In+2 + (n+ 1)In =

π

2
− 1

n+ 2
,

subtracting the second one from the first one will give us

(n+ 5)In+4 − (n+ 1)In =
1

n+ 2
− 1

n+ 4
.

Setting n = 4m, we have

(4(m+ 1) + 1)I4(m+1) = (4m+ 1)I4m +
1

4m+ 2
− 1

4m+ 4

= (4m+ 1)I4m − 1

2
·
(
− 1

2m+ 1
+

1

2m+ 2

)
= (4m+ 1)I4m − 1

2
·
[
(−1)2m+1 1

2m+ 1
+ (−1)2m+2 1

2m+ 2

]
.

Now we show the inductive step. Assume the statement is true for some n = k ≥ 1, i.e.

(4k + 1)I4k = A− 1

2

2n∑
r=1

(−1)r
1

r
.

Using the identity above, we have

(4(k + 1) + 1)I4(k+1) = (4k + 1)I4k − 1

2
·
[
(−1)2k+1 1

2k + 1
+ (−1)2k+2 1

2k + 2

]
= A− 1

2

2k∑
r=1

(−1)r
1

r
− 1

2
·
[
(−1)2k+1 1

2k + 1
+ (−1)2k+2 1

2k + 2

]

= A− 1

2

2(k+1)∑
r=1

(−1)r
1

r
.

Hence, the original statement is true for n = 1 (as shown when determining the value of A), and
given the original statement holds for some n = k ≥ 1, it holds for n = k + 1. By the principle of
mathematical induction, this statement holds for all n ≥ 1, where

A =
π

4
− ln 2

2
.
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2017.2 Question 2

We have

xn+2 =
axn+1 − 1

xn+1 + b

=
a · axn−1

xn+b − 1
axn−1
xn+b + b

=
a(axn − 1)− (xn + b)

(axn − 1) + b(xn + b)

=
(a2 − 1)xn − (a+ b)

(a+ b)xn + (b2 − 1)
.

1. If the sequence is periodic with period 2, then for all integers n ≥ 0, we have

xn+2 = xn ⇐⇒ xn

[
(a+ b)xn + (b2 − 1)

]
= (a2 − 1)xn − (a+ b)

⇐⇒ (a+ b)x2
n − (a+ b)(a− b)xn + (a+ b) = 0

⇐⇒ (a+ b)(x2
n − (a− b)xn + 1) = 0.

We also have

xn+1 = xn ⇐⇒ xn(xn + b) = axn − 1

⇐⇒ x2
n − (a− b)xb + 1 = 0,

and this means that for some n = k ≥ 0, we must have x2
n − (a − b)xn + 1 ̸= 0 (otherwise, the

sequence will have period 1).

Therefore, for such n = k, we must have a+ b = 0 for the first condition to be true, and hence this
is a necessary condition.

2. Using the formula between xn+4 and xn, we have

xn+4 =
(a2 − 1)xn+2 − (a+ b)

(a+ b)xn+2 + (b2 − 1)

=
(a2 − 1) · (a2−1)xn−(a+b)

(a+b)xn+(b2−1) − (a+ b)

(a+ b) · (a2−1)xn−(a+b)
(a+b)xn+(b2−1) + (b2 − 1)

=
(a2 − 1) ·

[
(a2 − 1)xn − (a+ b)

]
− (a+ b) ·

[
(a+ b)xn + (b2 − 1)

]
(a+ b) · [(a2 − 1)xn − (a+ b)] + (b2 − 1) · [(a+ b)xn + (b2 − 1)]

=

[
(a2 − 1)2 − (a+ b)2

]
xn −

[
(a2 − 1)(a+ b) + (a+ b)(b2 − 1)

]
(a+ b) [(a2 − 1) + (b2 − 1)]xn + [(b2 − 1)2 − (a+ b)2]

.

If sequence has period 4, we have xn+4 = xn for all integers n ≥ 0, and the sequence does not have
period 1, 2 or 3.

We notice

xn+4 = xn ⇐⇒ xn ·
[
(a+ b)

[
(a2 − 1) + (b2 − 1)

]
xn +

[
(b2 − 1)2 − (a+ b)2

]]
=
[
(a2 − 1)2 − (a+ b)2

]
xn −

[
(a2 − 1)(a+ b) + (a+ b)(b2 − 1)

]
⇐⇒ (a+ b)(a2 + b2 − 2)

(
x2
n − (a− b)xn + 1

)
= 0.

From the previous part, we know that for some n = k ≥ 0, we must have

(a+ b)
(
x2
k − (a− b)xk + 1

)
̸= 0,

which means a+ b ̸= 0 and x2
k − (a− b)xk + 1 ̸= 0. Hence, we must have a2 + b2 − 2 = 0.

On the other hand, if a2 + b2 − 2 = 0, a + b ̸= 0 and x2
k − (a − b)xk + 1 ̸= 0 for some n = k ≥ 0,

we know that the sequence does not satisfy xn+1 = xn, does not satisfy xn+2 = xn, and it satisfies
xn+4 = xn.

Eason Shao Page 175 of 430



STEP Project Year 2017 Paper 2

If xn+3 = xn, then we have xn+3 = xn+4 which contradicts with not satisfying xn+1 = xn. Hence,
the sequence does not satisfy xn+3 = xn, and it must have period 4.

Therefore, the sequence has period 4, if and only if
a+ b ̸= 0,

a2 + b2 − 2 = 0,

x2
k − (a− b)xk + 1 ̸= 0 for some n = k ≥ 0.
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2017.2 Question 3

1. Since sin y = sinx, we must have
y = x+ 2kπ

where k ∈ Z, or
y = (2k + 1)π − x

where k ∈ Z.
For the first case, since x ∈ [−π, π] and y ∈ [−π, π], we must have simply x = y.

For the second case, within this range, we can have y = π − x, and y = −π − x.

Hence, the sketch looks as follows.

x

y

0

y = x

y = π − x

y = −π − x

π

π

−π

−π

2. Differentiating with respect to x, we have

cos y
dy

dx
=

1

2
cosx.

Since sin y = 1
2 sinx, cos y = ±

√
1− sin2 y = ±

√
1− 1

4 sin
2 x. Since 0 ≤ y ≤ 1

2π, cos y > 0, and

hence cos y = 1
2

√
4− sin2 x. Hence,

dy

dx
=

1
2 cosx

1
2

√
4− sin2 x

=
cosx√

4− sin2 x
.

Differentiating this again gives us

d2y

dx2
=

(− sinx)
√
4− sin2 x− 1

2 · (−2 sinx) · cosx · 1√
4−sin2 x

· cosx

4− sin2 x

=
(− sinx)(4− sin2 x) + sinx cos2 x

(4− sin2 x)
3
2

=
−4 sinx+ sin3 x+ sinx(1− sin2 x)

(4− sin2 x)
3
2

= − 3 sinx

(4− sin2 x)
3
2

,

as desired.
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Within this range of x and y, we have

y = arcsin

(
1

2
sinx

)
,

and hence this is a function, and each x corresponds to a unique y.

At x = 0,

y = 0, y′ =
cos 0√

4− sin2 0
=

1

2
,

and at x = π
2 ,

y =
π

6
, y′ = −

cos π
2√

4− sin2 π
2

= 0.

Since y′′ = − 3 sin x

(4−sin2 x)
3
2
< 0 for x ∈

[
0, π

2

]
, this function is concave, and hence the graph looks as

follows.

x

y

O π/2

π/6

Hence, for (x, y) ∈ [−π, π]2, the graph looks as follows, by symmetry.

x

y

O

−π −π/2

π/2 π

−π

−5π/6

−π/6

π/6

5π/6

π

3. The graph is as follows.
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x

y

O

−π −π/2

π/2 π

−2π/3

−π/2

−π/3

π/3

π/2

2π/3
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2017.2 Question 4

1. If f(x) = 1, this gives (∫ b

a

g(x) dx

)2

≤ (b− a)

(∫ b

a

g(x)2 dx

)
.

Let g(x) = ex, a = 0 and b = t, and we have

LHS =

(∫ t

0

ex dx

)2

=
(
et − 1

)2
,

and

RHS = t

∫ t

0

e2x dx =
t

2

(
e2t − 1

)
=

t

2

(
et − 1

) (
et + 1

)
.

Since LHS ≤ RHS, we have (
et − 1

)2 ≤ t

2

(
et − 1

) (
et + 1

)
,

and hence
et − 1

et + 1
≤ t

2
,

since et + 1 > 0.

2. If f(x) = x, and a = 0, b = 1, the Schwarz inequality gives(∫ 1

0

xg(x) dx

)2

≤
∫ 1

0

x2 dx

∫ 1

0

g(x)2 dx.

Since ∫ 1

0

x2 dx =
1

3

[
x3
]1
0
=

1

3
,

we therefore have

3

(∫ 1

0

xg(x) dx

)2

≤
∫ 1

0

g(x)2 dx.

Consider g(x) = exp
(
− 1

4x
2
)
. Notice that∫ 1

0

xg(x) dx =

∫ 1

0

x exp

(
−1

4
x2

)
dx

= −2

[
exp

(
−1

4
x2

)]1
0

= −2

[
exp

(
−1

4

)
− exp (0)

]
= 2

(
1− exp

(
−1

4

))
,

and hence

3 ·
[
2

(
1− exp

(
−1

4

))]2
≤
∫ 1

0

exp

(
−1

2
x2

)
dx,

which is equivalent to ∫ 1

0

exp

(
−1

2
x2

)
dx ≥ 12

(
1− exp

(
−1

4

))2

,

as desired.
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3. For the right-half of the inequality, let f(x) = 1, and let the bounds be a = 0, b = 1
2π, we have(∫ π

2

0

g(x) dx

)2

≤ π

2

∫ π
2

0

g(x)2 dx.

Let g(x) =
√
sinx, and hence(∫ π

2

0

√
sinx dx

)2

≤ π

2

∫ π
2

0

sinxdx =
π

2
[− cosx]

π
2
0 =

π

2
.

Since the integrand
√
sinx ≥ 0 for all x ∈

[
0, π

2

]
, the integral over this interval must be non-

negative, and hence ∫ π
2

0

√
sinxdx ≤

√
π

2
.

For the left-half of the inequality, consider g(x) = 4
√
sinx, and f(x) = cosx (with the same bounds,

a = 0, b = 1
2π). We notice that∫ b

a

f(x)g(x) dx =

∫ 1
2π

0

cosx
4
√
sinx dx

=
4

5

[
(sinx)

5
4

] 1
2

0

=
4

5

[
1

5
4 − 0

5
4

]
=

4

5
,

and that ∫ b

a

f(x)2 dx =

∫ 1
2π

0

cos2 x dx

=

∫ 1
2π

0

1 + cos 2x

2
dx

=

[
1

2
x+

1

4
sin 2x

] 1
2π

0

=

[
1

2
· 1
2
π +

1

4
sinπ

]
−
[
1

2
· 0 + 1

4
sin 0

]
=

1

4
π.

Hence, by the Schwarz inequality, we have

16

25
≤ 1

4
π ·
∫ π

2

0

√
sinx dx,

and hence ∫ π
2

0

√
sinxdx ≥ 64

25π
.

Combining both sides of the equality, we hence have

64

25π
≤
∫ π

2

0

√
sinx ≤

√
π

2
,

as desired.
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2017.2 Question 5

1. By taking derivatives with respect to t, we have

dx

dt
= 2at,

and
dy

dt
= 2a,

hence
dy

dx
=

2a

2at
=

1

t
.

The gradient of the normal will hence be −t, and hence the normal through P (ap2, 2ap) will be

y − 2ap = −p(x− ap2).

The point N(an2, 2an) is also on this line, and hence

2a(n− p) = −ap(n− p)(n+ p).

Since n ̸= p, we must have
2 = −p(n+ p).

Given p ̸= 0, we have

n+ p = −2

p
,

and hence

n = −p− 2

p
= −

(
p+

2

p

)
.

2. The distance between P (ap2, 2ap) and N(an2, 2an) is given by

|PN |2 = (2ap− 2an)
2
+
(
ap2 − an2

)2
= a2

[
4(p− n)2 + (p− n)2(p+ n)2

]
= a2(p− n)2

[
4 + 4

(
−2

p

)2
]

= a2
[
p+

(
p+

2

p

)]2
· 4
(
p2 + 1

p2

)
= 4a2 · 4 · (p

2 + 1)2

p2
· p

2 + 1

p2

= 16a2
(p2 + 1)3

p4
.

Let f(p) = (p2+1)3

p4 . By differentiation,

f ′(p) =
3 · 2p · (p2 + 1)2 · p4 − (p2 + 1)3 · 4 · p3

p8

=
2(p2 + 1)2p3

p8
[
3p2 − 2(p2 + 1)

]
=

2(p2 + 1)2

p5
(
p2 − 2

)
.

This means that f ′(p) = 0 precisely when p2 − 2 = 0, i.e. p = ±
√
2.

When 0 < p <
√
2, f ′(p) < 0, and when

√
2 < p, f ′(p) > 0.

When p < −
√
2, f ′(p) < 0, and when −

√
2 < p < 0, f ′(p) > 0.

This means that when p2 − 2 = 0 (i.e. p = ±
√
2), f(p) has a minimum.

Since |PN |2 = 16
a2 f(p) is a positive multiple of f(p), we must have that |PN |2 is minimised when

p2 = 2.
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3. Since Q(aq2, 2aq) is on the circle with diameter PN , we must have that QP and QN are perpen-
dicular.

The gradient of QP is given by

mQP =
2aq − 2ap

aq2 − ap2
=

2(q − p)

(q + p)(q − p)
=

2

q + p
,

and the gradient of QN is given by

mQN =
2aq − 2an

aq2 − an2
=

2(q − n)

(q + n)(q − n)
=

2

q + n
.

Since QP and QN are perpendicular, we must have

mQP ·mQN = −1 ⇐⇒ 2

q + p
· 2

q + n
= −1

⇐⇒ −4 = (q + p)(q + n)

⇐⇒ q2 + (p+ n)q + pn = −4

⇐⇒ q2 − 2

p
· q − p2 − 2 = −4

⇐⇒ p2 − q2 +
2q

p
= 2,

as desired.

When |PN | is a minimum, we have p = ±
√
2, and hence

2− q2 ±
√
2q = 2,

which gives
q(q ∓

√
2) = 0.

Hence, q = 0, or q = ±
√
2 (which means p = q, which cannot be the case). When q = 0, Q(0, 0) is

at the origin, as desired.
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2017.2 Question 6

1. We first look at the base case where n = 1. S1 = 1
1 = 1, and 2 ·

√
1− 1 = 1, so

S1 ≤ 2 ·
√
1− 1

holds, and the original statement holds for when n = 1.

Assume this holds for some n = k ∈ N, i.e., Sk ≤ 2
√
k − 1. We have

Sk+1 =

k+1∑
r=1

1√
r

=

k∑
r=1

1√
r
+

1√
k + 1

= Sk +
1√
k + 1

≤ 2
√
k +

1√
k + 1

− 1.

We would like to show

2
√
k +

1√
k + 1

≤ 2
√
k + 1.

Notice that

2
√
k +

1√
k + 1

≤ 2
√
k + 1 ⇐⇒ 2

√
k(k + 1) + 1 ≤ 2(k + 1)

⇐⇒ 2
√
k(k + 1) ≤ 2k + 1

⇐⇒ 4k(k + 1) ≤ (2k + 1)2

⇐⇒ 4k2 + 4k ≤ 4k2 + 4k + 1

⇐⇒ 0 ≤ 1,

which is true.

Hence,

Sk+1 ≤ 2
√
k +

1√
k + 1

− 1 ≤ 2
√
k + 1− 1,

which is precisely the statement for n = k + 1.

The original statement holds for the base case where n = 0, and assuming it holds for some
n = k ∈ N, it holds for n = k + 1. Hence, by the principle of mathematical induction, the original
statement holds for all n ∈ N.

2. For k ≥ 0, we notice

(4k + 1)
√
k + 1 > (4k + 3)

√
k ⇐⇒ (4k + 1)2(k + 1) > (4k + 3)2k

⇐⇒ (16k2 + 8k + 1)(k + 1) > (16k2 + 24k + 9)k

⇐⇒ 16k3 + 8k2 + k + 16k2 + 8k + 1 > 16k3 + 24k2 + 9k

⇐⇒ 1 > 0,

which is true.

We claim that C = 3
2 is the smallest number C which makes this true. We first show that C = 3

2
makes the statement true by induction. For the base case where n = 1, S1 = 1, and

2
√
1 +

1

2
√
1
− 3

2
=

5

2
− 3

2
= 1,

and so this statement holds for n = 1.
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Now, assume that this statement holds for some n = k ∈ N, i.e.

Sk ≥ 2
√
k +

1

2
√
k
− C.

We have

Sk+1 = Sk +
1√
k + 1

≥ 2
√
k +

1

2
√
k
+

1√
k + 1

− C.

We would like to show that

2
√
k +

1

2
√
k
+

1√
k + 1

≥ 2
√
k + 1 +

1

2
√
k + 1

.

Notice that

2
√
k +

1

2
√
k
+

1√
k + 1

≥ 2
√
k + 1 +

1

2
√
k + 1

⇐⇒ 2
√
k +

1

2
√
k
≥ 2

√
k + 1− 1

2
√
k + 1

⇐⇒ 4k + 1

2
√
k

≥ 4(k + 1)− 1

2
√
k + 1

⇐⇒ (4k + 1)
√
k + 1 ≥ (4k + 3)

√
k,

which is implied by the proven inequality, and hence

Sk+1 ≥ 2
√
k +

1

2
√
k
+

1√
k + 1

− C ≥ 2
√
k + 1 +

1

2
√
k + 1

− C,

which precisely proves the statement for n = k + 1.

The claimed statement holds for the base case where n = 1, and given it holds for some n = k ∈ N,
it holds for n = k + 1. Hence, the statement holds for all n ∈ N when C = 3

2 .

If C < 3
2 , we have for n = 1

2
√
1 +

1

2
√
1
− C >

5

2
− 3

2
= 1,

but
S1 = 1,

so the statement does not hold for when n = 1.

Hence, the smallest number C for the statement to be true is C = 3
2 .
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2017.2 Question 7

1. Since ln is an increasing function, for 0 < x < 1, we have lnx < 0, and

f(x) > x ⇐⇒ ln f(x) > lnx

⇐⇒ lnxx > lnx

⇐⇒ x lnx > lnx

⇐⇒ x < 1,

which is true since 0 < x < 1.

Notice that

x < g(x) < f(x) ⇐⇒ lnx < lnxf(x) < lnxx

⇐⇒ lnx < xx lnx < x lnx

⇐⇒ 1 > xx > x.

The right inequality is shown by the previous part. For the left inequality, we have

1 > xx ⇐⇒ ln 1 > x lnx

⇐⇒ 0 > x lnx

must be true, since 0 < x < 1 and lnx < 0.

Hence, we have x < g(x) < f(x) for 0 < x < 1.

When x > 1, we claim that x < f(x) < g(x).

2. Notice that

f ′(x) =
d

dx
xx

=
d

dx
exp(x lnx)

= exp(x lnx) ·
(
1 · lnx+ x · 1

x

)
= exp(x lnx) · (lnx+ 1)

= f(x) · (lnx+ 1).

f ′(x) = 0 if and only if lnx+ 1 = 0, which holds if and only if x = 1
e .

3. We have
lim
x→0

f(x) = lim
x→0

exp(x lnx) = exp(0) = 1,

and hence
lim
x→0

g(x) = 0.

4. Let h(x) = 1
x + lnx. We have

h′(x) = − 1

x2
+

1

x
=

x− 1

x2
.

When 0 < x < 1, h′(x) < 0, and when 1 < x, h′(x) > 0. Hence, h takes a minimum when x = 1,
and h(1) = 1

1 + ln 1 = 1.

This shows precisely that
1

x
+ lnx ≥ 1

for x > 0.
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Notice that

g′(x) =
d

dx
xf(x)

=
d

dx
exp(f(x) lnx)

= exp(f(x) lnx) ·
(
1

x
· f(x) + f ′(x) lnx

)
= g(x) ·

(
1

x
· f(x) + f(x) · (lnx+ 1) · lnx

)
= f(x)g(x) ·

(
1

x
+ lnx(lnx+ 1)

)
≥ f(x)g(x) ·

(
1 + (lnx)2

)
> 0,

since f(x), g(x) > 0 for x > 0 (since they are both exponentials), and 1 + (lnx)2 ≥ 1 > 0 as well.

The graphs of the functions look as follows.

x

y

y = x

y = f(x)

y = g(x)

y = f(x)
1

y = g(x)

O 1
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2017.2 Question 8

The line through A perpendicular to BC is

l1 : r = a+ λu, λ ∈ R.

The line through B perpendicular to CA is

l2 : r = b+ µv, µ ∈ R.

Since P is the intersection of l1 and l2, we must have

a+ λu = b+ µv,

and hence solving for v we have

v =
1

µ
(a+ λu− b) .

Since v is perpendicular to CA, we must have v · (a− c) = 0, and hence

1

µ
(a+ λu− b) · (a− c) = 0

⇐⇒ (a− b) · (a− c) + λu · (a− c) = 0

⇐⇒ λ = − (a− b) · (a− c)

u · (a− c)
.

Hence, the position vector of P , p, must satisfy that

p = a+ λu = a− (a− b) · (a− c)

u · (a− c)
u.

CP is perpendicular to AB if and only if (p− c) · (b− a) = 0. We notice

(p− c) · (b− a) = (a+ λu− c) · (b− a)

= (a− c) · (b− a) + λu (b− a) .

Since u is perpendicular to BC, we must have u · (c− b), and hence u · c = u · b. Hence,

(p− c) · (b− a) = (a− c) · (b− a) + λu · (b− a)

= (a− c) · (b− a) + λu · (c− a)

= (a− c) · (b− a)− (a− b) · (a− c)

u · (a− c)
u · (c− a)

= (a− c) · (b− a) + (a− b) · (a− c)

= (a− c) · (b− a)− (a− c) · (b− a)

= 0,

and hence CP is perpendicular to AB.
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2017.2 Question 12

1. Let X ∼ Po(λ) and Y ∼ Po(µ). X and Y take values of non-negative integers. Hence, for any
non-negative integer r, we have

P(X + Y = r) =

r∑
t=0

P(X = t, Y = r − t)

=

r∑
t=0

P(X = t) P(Y = r − t)

=

r∑
t=0

λt

eλ · t!
· µr−t

eµ · (r − t)!

=
1

eλ+µ
·

r∑
t=0

λtµr−t

t!(r − t)!

=
1

eλ+µr!
·

r∑
t=0

r!λtµr−t

t!(r − t)!

=
1

eλ+µr!
·

r∑
t=0

(
r

t

)
λtµr−t

=
1

eλ+µr!
(λ+ µ)r

=
(λ+ µ)r

eλ+µr!
,

which is precisely the probability mass function for Po(λ+ µ), and hence X + Y ∼ Po(λ+ µ).

2. We consider the probability mass function for the number of fishes Adam has caught in this
situation. Given X + Y = k, the only values that X can take are 0, 1, · · · , k, and hence consider
x = 0, 1, · · · , k, we have

P(X = x | X + Y = k) =
P(X = x,X + Y = k)

P(X + Y = k)

=
P(X = x, Y = k − x)

P(X + Y = k)

=
P(X = x) · P(Y = k − x)

P(X + Y = k)

=

λx

eλx!
· µk−x

eµ(k−x)!

(λ+µ)k

eλ+µk!

=
λxµk−x

(λ+ µ)k
· k!

x!(k − x)!

=

(
k

x

)
·
(

λ

λ+ µ

)x

·
(

µ

λ+ µ

)k−x

.

This is precisely the probability mass function for the binomial distribution B
(
k, λ

λ+µ

)
, and we

can say that

(X | X + Y = k) ∼ B

(
k,

λ

λ+ µ

)
.

3. When the first fish is caught, this is X + Y = 1, and X = 1. Hence, the probability is

P(X = 1 | X + Y = 1) =

(
1

1

)
·
(

λ

λ+ µ

)1

·
(

µ

λ+ µ

)1−1

=
λ

λ+ µ
.

4. There is a probability of λ
λ+µ of Adam catching the first fish, and in this case the waiting time is

first for the fish to come up (which is 1
λ+µ ), plus the waiting time of Eve’s fish to come up (which

is 1
µ ), summed together. This applies the other way around as well if Eve catches the first fish.
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Hence, the expected time is

λ

λ+ µ
·
(

1

λ+ µ
+

1

µ

)
+

µ

λ+ µ
·
(

1

λ+ µ
+

1

λ

)
=

1

λ+ µ
·
(

λ

λ+ µ
+

λ

µ
+

µ

λ+ µ
+

µ

λ

)
=

1

λ+ µ
·
(
1 +

λ2 + µ2

λµ

)
=

λ2 + λµ+ µ2

λµ(λ+ µ)
.
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2017.2 Question 13

1. For each try, there is a probability of 1
n of getting the correct key, and 1 − 1

n otherwise. Let X1

denote the number of attempts to open the door, we can see that X1 ∼ Geo
(
1
n

)
, and hence using

the formula for a geometric distribution,

E(X1) = n.

The way to consider the binomial expansion is as follows. First, note the probability mass function
of X1 is

P(X1 = x) =

(
1− 1

n

)x−1

· 1
n
,

and hence the expectation is given by

E(X1) =

∞∑
x=1

xP(X1 = x)

=

∞∑
x=1

x ·
(
1− 1

n

)x−1

· 1
n

=
1

n
·

∞∑
x=1

x ·
(
1− 1

n

)x−1

.

Consider the binomial expansion of (1− q)−2. We have

(1− q)−2 =

∞∑
t=0

(−q)t ·
∏t

r=1(−2 + 1− t)

t!

=

∞∑
t=0

(−1)tqt(−1)t
∏t

r=1(1 + t)

t!

=

∞∑
t=0

qt(t+ 1)!

t!

=

∞∑
t=0

(t+ 1)qt.

Let q = 1− 1
n . We can see

E(X1) =
1

n
·

∞∑
x=1

x ·
(
1− 1

n

)x−1

=
1

n
·

∞∑
x=0

(x+ 1) · qx

=
1

n
· (1− q)−2

=
1

n
·
(
1

n

)−2

= n,

precisely what we had before.

2. Let X2 be the number of attempts to open the door in this case. Considering the probability mass
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function of X2, we have for x = 1, 2, . . . , n, that

P(X2 = x) =
n− 1

n
· n− 2

n− 1
· · · n− (x− 2)− 1

n− (x− 2)
· 1

n− (x− 1)

=
(n− 1)!/(n− x)!

n!/(n− x)!

=
(n− 1)!

n!

=
1

n
.

This shows that X2 follows a discrete uniform distribution on {1, 2, . . . , n}, i.e., X2 ∼ U(n).

Hence, E(X2) =
n+1
2 .

3. Let X3 be the number of attempts to open the door in this case. Considering the probability mass
function of X2, we have for x = 1, 2, . . ., that

P(X3 = x) =
n− 1

n
· n

n+ 1
· · · n+ x− 3

n+ x− 2
· 1

n+ x− 1

=
(n+ x− 3)!/(n− 2)!

(n+ x− 1)!/(n− 1)!

=
(n+ x− 3)!(n− 1)!

(n+ x− 1)!(n− 2)!

=
n− 1

(n+ x− 1)(n+ x− 2)
,

which is precisely what is desired.

By partial fractions, we have

P(X3 = x) = (n− 1) ·
(

2

n+ x− 2
− 1

n+ x− 1

)
,

and hence the expected number of attempts is

E(X3) =

∞∑
x=1

(n− 1) · x ·
(

1

n+ x− 2
− 1

n+ x− 1

)

= (n− 1)

∞∑
x=1

x

(
1

n+ x− 2
− 1

n+ x− 1

)
.

We consider the partial sum of this infinite sum op to x = t, and

t∑
x=1

x

(
1

n+ x− 2
− 1

n+ x− 1

)
=

t∑
x=1

x

n+ x− 2
−

t∑
x=1

x

n+ x− 1

=

t−1∑
x=0

x+ 1

n+ x− 1
−

t∑
x=1

x

n+ x− 1

=
1

n− 1
+

t−1∑
x=1

1

n+ x− 1
− t

n+ t− 1

=

t−1∑
x=0

1

n+ x− 1
− t

n+ t− 1

=

n+t−2∑
x=n−1

1

x
− t

n+ t− 1
.
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Hence, we have

E(X3) = (n− 1)

∞∑
x=1

x

(
1

n+ x− 2
− 1

n+ x− 1

)

= (n− 1) lim
t→∞

(
n+t−2∑
x=n−1

1

x
− t

n+ t− 1

)

= (n− 1) lim
t→∞

(
n+t−2∑
x=1

1

x
−

n−2∑
x=1

1

x
− t

n+ t− 1

)

= (n− 1)

( ∞∑
x=1

1

x
−

n−2∑
x=1

1

x
− 1

)

does not converge since the first term (harmonic sum) diverges, and the rest of the terms are finite.
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