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2016.3 Question 1

Notice that
/ _/*W da _/*“ da
e (@420 40" Joo ((z4a)+ (0 —a?)"

1. Let  +a = vb—a?tanu. When 2 — —o0, u — —73

Z,and when x — 400, u — g We have also

dz =d(xz +a) =dvb—a?tanu
=+/b—a?dtanu
= b — a2sec® udu.

Therefore, we have

/+°° dx

I =

o (@+a)?+(b—a?)

/’2' Vb — a2 sec? udu
(Vb —a?tan u) + (b—a?)

_/ Vb —a?seczudu

)z (b—a?)(tan®u + 1)

sec? u du

—z Vb Vb —aZsec?u
,r
2

as desired.

2. Using the same substitution, we have

I _/+°° dz
" e a2+ (b —a?)m
_/72r Vb —a?sec? udu

z [(b—a?)sec?u]”

du
\/b—a2/ b—a?)secu]"

Therefore,

2n(b — a*) 41 = (2n — 1)1,
is equivalent to

du
2nvb — a? 7 = (2
" ¢ /’2' b—a2 secgu] = (n - \/b—a2 —z= [(b—a?)sec?u]"”
is equivalent to
Pl du 3 du
2n(b — a? / _ 2n —1 /
( ) = [(b— a?) sec? ul” ( ) —z [(b— a?)sec? u]

is equivalent to
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Notice that

. tanu ¢ z _
= lm |——| — tanudsec™ 2" u
a3 |sec?u |, _

~
z
. . — a — —
= hrr}r [smucosQn lu}b —/ —2nsecutanusec” 2" yutanudu
a—% _
b—>—3%

3 tan?ud
:2n/ n<udu

sec2n

us
2

2

2n[
2n/_

[NEIN

(sec?u — 1) du

sec2n

du 2 du
—— 2n —
sec< T4y, _= sec"uy

Il I
RENVS

NIE]
INE

This means

e
[N

du

sec2m ¢’

(2n — 1)/_

which is exactly what was desired.

du
— =2n
sec<" T4y _

[ME)
[ME)

3. Proof by induction:

e Base Case. When n =1,

™
LHszll - ﬁ,

RHS — s 2-1-2\ T 0\ m
Tzl —g2)l-3\ 1-1 ) \b—a2\0) Vh—aZ

e Induction Hypothesis. Assume for some n = k € N, we have

T 2n — 2
I, = — .
22n-2(p — g2)n=3 \ n — 1

e Induction Step. When n =k + 1,

In:Ik+1
_ %kl
“2(k+D)(b—a?) "

B 2k +1 T 2%k — 2
T2k +1)(b—a?) 226-2(p— q2)k3 < k-1 >
B 7r (2k—2)!  (2k+1)(2k +2)
C22k(h—g2)k+3 (k= DIk —1)!  (k+1)?

B T 2k!

22k (h — q2)k+3 KR!

_ m 2k
C22k(h—a2)k+3 \ k

_ U 2n —2
_22n72(b_a2)n—% n—1)
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Therefore, by the principle of mathematical induction, for n € N|

I ™ 2n — 2
"_22n72(b7a2)n—% n—1),"

as desired.
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2016.3 Question 2

1. For y? = 4ax, we have z = %, and therefore
dr 2y
dy  4a’

Therefore, the normal through @, lg satisfies that

4a
2 2aq

lg:7—aq* = — (y — 2aq),

ie.
lg : q(z — ag®) = — (y — 2aq).
Since P € lg, we must have

q(ap® — aq®) = — (2ap — 2aq)
aq(p+q)(p —q) = —2a(p — q)

P+ q° = 2
CHpg+2=0
as desired.
2. We also have
24+ pr+2=0.

Since q # r, q,r are the solutions to the equation
2?24+ pr+2=0,

and therefore ¢ +r = —p, qr = 2.
Note that the equation for QR satisfies that

2ar —2aq 2

MoR = ar? —aq>  r4q
Therefore, lgg satisfies that
lor 1y =200 = —— (v —aq’)
Y= r—?—q (x—an—l—r;q-Qaq)
Yy = rtq (sc—aq2+aq2—|—aqr)
y= @+ oan)

2
y=——(+ 2a).
p

This passes through a fixed point (—2a, 0).
3. OP has equation y = iaT’;x, which is y = 2?”0. Therefore, since T'= OP N QR, xr must satisfy that

2 2
——(xz + 2a) = —x,
p p

—(z+2a)==x
T = —a.
Therefore, yr = —2?“, T (—a, —%) lies on the line x = —a which is independent of p.
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2a

P

_ 2a

The distance from the z-axis to T is =

Notice that since gr = 2, ¢ and r must take the same parity, and therefore |p| = |q| + |r|. By the

AM-GM inequality, we have

lal + |7 > 2V/]q] - Ir] = 2v2,
with the equal sign holding if and only if |¢| = |r|, ¢ = r, which is impossible.
Therefore, |p| > 2+/2 and therefore ‘2?“‘ < /2 as desired.
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2016.3 Question 3
1. We have that

d e"P(z)  Qz)[e"P'(z) + e"P(z)] — Q' (z)e"P(x)
dz Q(x) Q(z)?
_ 2 [Q@)P'(2) + Q) P(z) — Q' (z) P(x)]
Q(x)?
L 13 =2
(2 +1)

Therefore, we have

[Q(2)P'(2) + Q(z)P(z) — Q'()P(x)] _ 2° -2
Q(z)? (x+1)2

(z+1)?[Q@)P'(2) + Q(z) P(2) — Q' (2)P(x)] = Q(2)* (" — 2) .

If we plug in x = —1 on both sides, we have LHS = 0 and RHS = Q(—1)2 - (-3).
Therefore, Q(—1)> =0, Q(—1) =0

Since Q(z) € Plx], we must have

(z+1) | Qx)

as desired.

Therefore, deg Q > 1, degRHS = 3 + 2deg Q.

If deg P = —o0, P(x) = 0,LHS = 0 which is impossible.

If deg P =0, P(z) = C € R\ {0}, LHS = C(x+1)2Q(x), deg LHS = deg ¢ + 2, which is impossible.
Therefore, we have deg P’ = deg P — 1. Hence,

deg Q(z)P'(z) = deg P'(z)Q(z) = deg P + deg Q — 1,
and

deg Q(2)P(x) = deg P + deg Q.

Therefore,
deg LHS = 2 4 deg P + deg @ = deg RHS,

which gives
deg P =deg@Q + 1,

as desired.
When Q(z) = z + 1, let P(x) = ax? + bz + ¢ where a # 0. We have P'(z) = 2ax + b. Therefore,

(z +1)*[Q2)P'(2) + Q(z) P(z) — Q' (2)P(x)] = Q(x)* ($3—2)
Q(2)P'(x) + Q(2)P(x) — Q'(w)P(z) = 2* —

(x +1)(2ax +b) + (x + 1)(az? + bx +¢) — (ax® +bx +c) = 2> — 2
(z +1)(2az +b) 4+ z(az® + bz +¢) = 23 — 2
az® + (2a + b)2* + (2a+b+c)r +b= 2> — 2.

This solves to (a,b,c) = (1, —2,0). Therefore, P(x) = 22 — 2x.
2. In this case, we must have that
(z +1) [Q(z)P'(x) + Q(z) P(z) — Q'(2) P(x)] = Q()*.

Therefore, Q(z) = (z + 1)R(z) for some R(x) € P[z]. We may assume P(—1) # 0.
Hence, Q'(z) = (z + 1)R'(z) + R(x)
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Plugging this in gives us
(z +1D)R(z)P'(z) + (z + 1)R(z)P(z) — [(x + 1)R(z) + R(x)] P(z) = (z + 1)R(z)?,
which simplifies to

(2 + 1) [R(@)P'(z) + R(2)P(x) — R'(2)P(x)] — R(z)P(x) = (z + 1) R(x)”.

Let z = —1, and we can see z + 1 divides R(z), since x + 1 can’t divide P(x).
Therefore, let R(x) = (z + 1)S(x), therefore R'(z) = S(x) + (z + 1)5(x).
This gives

(x +1)S(z) [P (z) + P(x)] — [S(z) + (z + 1)S"(2)] P(z) — S(z)P(z) = (z + 1)25(z)?,
which simplifies to

(24 1) [S(2)P'(2) + S(2) P(x) — ' () P(x)] - 25(2)P(x) = (x + 1)*S(x)>.

Therefore, we can see that x 4+ 1 divides S(x) by similar reasons.

Repeating this, we can conclude that there are arbitrarily many factors of x 4+ 1 in Q(x) (proof by
infinite descent), which is impossible.

Formally speaking, let Q(x) = (z + 1)™T'(x) where T(—1) # 0, n € N. Therefore, we have
Q'(z) = n(z+1)""'T(2) + (z +1)"T"(x)
= (@ + 1" [T (@) + (2 + DT (2)].

Therefore,
(z+ 1) [Q(x)P'(x) + Q(2)P(z) — Q' () P(x)] = Q(z)
simplifies to
(z + )" (2) [P'(2) + P(2)] — (¢ +1)" [nT(2) + (¢ + 1)T"(2)] P(x) = (z + 1)*"T(x)?,
which further simplifies to

(2 + 1) [T(2)P'(2) + T(2)P(z) - T'(2) P(a)] - nT(2)P(x) = (& + 1)"T(x)*.

Now, let z = —1, we have that nT(—1)P(—1) = 0. But n # 0, T(—1) # 0, P(—1) # 0, which gives
a contradiction.

Therefore, such P and @ do not exist.
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2016.3 Question 4

1. Notice that
1 1 T " (x—1)

T+ar 142+ (I4a)(14a)  (1+an)(1+am+)

Therefore, we have

N

” N
r r+1) _ ro r+1
—(ltan)(A+amtt) —ao-1[l+a 1+
1 i 1 1
_1'—1T:1 1+27 1+4zrt+!
1 1 1
Trx—1|14z 14 gnt!
For |z| < 1, as n — oo, 21 — 0. Therefore,
- " ! Ly
rzl(l—l—m’“)(l—l—x’““)ix—l 1+
1 —x
-1 14z
o
1 — g2
as desired.
2. Notice that
2 2

sech(ry) sech((r +1)y) =~

4e—ry—(r+1)y
(1 + €—2ry) (1 + e—2(r+1)y)
e—2ry

(1+e29) (14 e 20r+Dy)

=4e7Y

Let © = e=2¥. We have

xT

(1+am) (14 amtl)’

sech(ry) sech((r + 1)y) = 4e™Y

When y > 0, 2 = e~2¥ € (0,1). Therefore,

oo _ 6_2y
Z:lsech(ry) sech((r +1)y) = 4e ym
2
— -y____ -
= 2e €2y — 6722/

= 2e¢7Y cosech(2y)

as desired.

Notice that for all # € R, coshz = cosh(—x), therefore sech x = sech(—zx).
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Therefore,

Z sech(ry) sech((r + 1)y)
oo 0

= Z sech(ry) sech((r + 1)y) + Z sech(ry) sech((r 4+ 1)y)
r=1 T=—00
[e's) —+oo

= Z sech(ry) sech((r + 1)y) + Z sech(—ry) sech((—r + 1)y)
r=1 r=0
[e'e) —+o0

= Z sech(ry) sech((r + 1)y) + Z sech(ry) sech((r — 1)y)
r=1 r=0
[e'e) —+oo

= Z sech(ry) sech((r + 1)y) + Z sech(ry) sech((r — 1)y) + sech(y) sech(0) + sech(0) sech(—y)
r=1 r=2
[e’s] —+oo

= Z sech(ry) sech((r + 1)y) + Z sech((r + 1)y) sech(ry) + 2sechy
r=1 r=1

= 4e” Y cosech(2y) + 2sechy

eV n 2
sinh2y = coshy

2e7Y 2

sinh y cosh y + coshy
2¢7Y + 2sinhy

sinh y coshy
2e7Y +e¥—eY

sinh y cosh y

eV — eV

sinh y cosh y
2 coshy

sinh y cosh y

= 2 cosech y.
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2016.3 Question 5

1. By the binomial theorem, we have

2m—+1
(14 2)?m*! = Z <2mk+ 1) k.

k=0

If we let x = 1, we have
2m—+1 2m + 1
22m+1 — ( >
2 U

2m+1

Since ( ) is a part of the sum, and all the other terms are positive, and there are other terms

which are not (*) (e.g. (*"5') = 1), we therefore must have

<2m + 1) < 92m+1
m

2. Notice that
2m+1\ _ (2m+1)!
( m ) — ml(m+1)!
@2m+1)2m)2m—1)---(m+2)
m!

A number theory argument follows. First, notice that all terms in the product P41 om+1 are
within the numerator. Therefore, we must have

Pm+1’2m+1 | (2m + 1)(2m)(2m — 1) ce (m + 2)

Next, since all the terms in the product are primes, none of the terms will therefore have factors
between 1 and m. This means that

ged (Pm+1,2m+17m!) =1,

i.e. Py41,2m+1 are coprime.

2m+1) _ (27n+1)(27n)(2’r‘n—1) - (m+2)

Therefore, given that ( is an integer, we must therefore have

m
2m+1
Pm+1,2m+1 ‘ ( >7
m
and hence )
m+1
Pm+1,2m+1 S ( m ) < 22m,
as desired.

3. Notice that

P1,2m+1 = Pl,m+1 N Pm+1,2m+l
< 4m+1 X 22nL
— 4m+l 3 4m

_ A2m—+1
=4 ,

as desired.
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4. First we look at the base case when n = 2.
Py o =2, 4% = 16, the original statement holds when n = 2.
Now, we use strong induction. Suppose the statement holds up to some n =k > 2.
If kK = 2m is even, the induction step for 2m — 2m + 1 is already shown in the previous part.

If Kk =2m+ 1 is odd, we must have that k£ 4 1 is even. The only even prime is 2, but since k > 2,
k+1+# 2, and k + 1 must be composite.

Therefore, Py 41 = P1 i < 4k < 4k+1 This completes the induction step.
Therefore, by strong induction, the statement P; ,, < 4™ holds for all n > 2.
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2016.3 Question 6

e In the case where B > A >0 or —B < —A < 0, notice that

Rcosh(z + ) = Rcoshx coshy 4+ Rsinh z sinh .

Therefore, we would like Rsinhy = A and Rcoshy = B.
Since coshy? — sinhy? = 1, we have R%2 = B2 — A2
We also have tanh~ = %, and therefore v = artanh %.

Notice that cosh~y > 0, so R must have the same sign as B.

—IfB>A>0,R=+vB?— A2
—IfB<-A<0, R=—-vVB2%- A2

e In the case where —A < B < A, notice that

Rsinh(z +v) = Rsinhycoshz + Rcoshvsinhz.

Therefore, we would like Rcoshy = A and Rsinhy = B.

Since coshy? — sinh? = 1, we have R? = B2 — A2,

We also have tanh~vy = %, and therefore v = artanh %.

Notice that coshy > 0, so R will have the same sign as A, and hence R = /A2 — B2,
e When B = A, we have

x

Asinhx+Bcoshx:A6 — + A
= Ae”.

e When B = — A, we have

Asinhx—i—Bcoshx:Ae _26 —Ae +26

= Ae™".

Therefore, in conclusion,

v B2 — A2 cosh (w + artanh %) , 0< A< B,

Ae®, 0<B=A,
Asinhx 4+ Bcoshx = ¢ /A2 — BZsinh (a: + artanh %) , —A<B<A,
—Ae %, B=-A<0,

—+/B? — A2 cosh (x + artanh %) , —B<—-A<0.

1. We have sechx = atanhz + b, and hence 1 = asinhx + bcoshx. If b > a > 0, we have

1/ b? — a2 cosh (z + artanh %) =1.

Therefore,
1
COSh (l’ —+ artanh %) = ﬂ
x + artanh % = tarcosh ER—

+ arcosh —— tanh

r = * arcosh ——— — artanh —

/02 — o2 b’
as desired.
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2. When a > b >0,

b
v a? — b%sinh <x + artanh ) =1.
a

Therefore,

1
V&

b
x + artanh — = arsinh ——
a a2 _ b2

b
sinh (x + artanh ) =
a

1 b
x = arsinh —— — artanh —.
2 _ b2

3. We would like to have two solutions to the equation 1 = asinh x + bcosh x.

e 0 < a < b, this gives

1
r = + arcosh ——— — artanh g,
2 _ g2 b

For this to make sense, we must have ﬁ > 1, and therefore 0 < Vb2 — a2 < 1, which is
0<b?—a?<1.

For this to have two distinct points, we would like to have arcosh ﬁ # 0 as well. This
means b? — a? # 1.
Therefore, in this case, this means that a < b < va? + 1.

e b = qa, this gives ae® = 1, which gives a unique solution z = —Ina.

e —a < b < a, this gives

B
vV A2 — B2sinh (I + artanh A) =1,

which can only give the solution z = arsinh \/ﬁ — artanh %.
e b = —a, this gives —ae™" = 1, which does not have a solution.

e —b < —a <0, this gives

—v/b% — a2 cosh (x + artanh ﬂ) =1,

b
but this is impossible, since both square root and cosh are always positive.
Therefore, the only possibility is when a < b < va? + 1.

4. When they touch at a point, this will mean at this value, the number of solutions will change on
both sides. This is only possible when b = /a2 + 1.

Therefore,

r = — artanh 4
vas+1
Hence,

y=atanhz 4+ b
= -0 ————=+Va?+1
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2016.3 Question 7

For w = exp %, we have for k =0,1,2,...,n — 1, that w* = exp % Therefore,
2mikn
(WF)™ = exp = exp(2mik) = 1.
Also, notice that argw” = %7”7 which means that all w®s are different.
This means that w® = 1,w' =1,w?,...,w™ ! are exactly the n roots to the polynomial 2™ — 1, which

has leading coefficient 1.
Therefore, we must have
(z—D(z-w) - (z—w" 1) =2"—1,

as desired.
For the following parts, W.L.O.G. let the orientation of the polygon be such that X = w*.

1. Let z represent the complex number for P, we have

n—1 n—1
H |PX}| = H |z—wk|
k=0 k=0
n—1

H(z—wk)

k=0
=" —1].

Since P is equidistant from X, and X7, we must have that P = rexp (%) for some r € R, where
|r| = |OP|. Therefore, we have

n—1

[T 1Pxil =" 1

k=0
T
" — ] -1
rexp<2) ’

== -1

=1,

If n is even, then 7 = |r|™ > 0, and therefore [r" + 1| = 7" + 1 =|r|" + 1 = |OP|" + 1 as desired.
If n is odd, and r > 0, then ™ = |r|™ > 0, and

LHS = |r" + 1]
=r"+1
= +1
=|0OP|" + 1.
When —1 <r <0, we have —1 <" = —|r|" < 0, and
LHS = |r" + 1|
=r"+1
= el +1
=—|OP|" +1.
When r < —1, we have ™ = —|r|™ < —1, and
LHS = |r" + 1]
=—r"—1
=r|" -1
= |OP|" - 1.
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In summary, when n is odd, we have

|OP|" +1, P is in the first quadrant,

n—1
H |PXk| =4 —|OP|" +1, P isin the third quadrant and |OP| < 1,
k=0 |OP|™ —1, P isin the third quadrant and |OP| > 1.

2. Notice that for a general point P whose complex number is z, we have

1:[ IPXp| = (z —w)(z —w?) -~ (z —w"Y)
k=1

z"—1
z—1
=1+4z+4+224+. 4271

If we let P = Xy, z =1, and RHS = n, just as we desired.
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2016.3 Question 8
1. If we replace x with —x in the original equation, we get
fl=2) + (1 = (=2)) f(=(~2)) = (-2)*,

which simplifies to

fl=2)+ (1 +2)f(z) = 2®
as desired.

Therefore, we have a pair of equations in terms of f(z) and f(—z):

f@)+ (1 -a)f(-z) =a?
(1+2)f(z) + f(-z) =22

Multiplying the second equation by (1 — x) gives us
(1 —a?)f(@) + (1 - 2)f(-2) =2?(1 - 2),
and subtracting the first equation from this
2 f(z) =~

which gives f(z) = .
Plugging this back, we have

LHS = f(2) + (1 - ) f(~2)
— 2+ (1-2)(~a)

zx—sc+332
::1:’2
= RHS

which holds. Therefore, f(x) = z is the solution to the functional equation.

2. For z # 1, we have

for x # 1, as desired.

The equation on g is
9(x) + xg(K(z)) = =,

and if we substitute = as K(z), we have
9(K(z)) + K(x)g(K(K(z))) = K(x),

which simplifies to
9(K(z)) + K(x)g(x) = K(z).

Multiplying the second equation by x, we have

eK(x)g(X) + 2g(K(z)) = 2K (x),
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and subtracting the first equation from this gives
(zK(x) = 1)g(z) = (K (z) — 1),

which gives

9() = K (z) —1

for x # 1.

If we plug this back to the original equation, we have

x+1

r—1

LHS = -2 44

2.
P )

z—1

2z 2e-(x+1)-(z—1)
24+1  (x4+1)24 (z—1)2

2x 2z(z2 — 1)
x2+1 222 + 2

2z z(x? —1)

Jr

x2+1 2241

_ 23 —x+22
2241
B (2?2 +1)
2+ 1
=z
= RHS,
SO 5
x
is the solution to the original functional equation.
3. Let H(z) = 1. Notice that
1
H(H(x)) = —
1—x
o 1l—x
S l-z-1
_z—1
oz
1
= ]_ —_ —
x
and
H(H(H(x)) = —
) =
1
1-(1-3)
_t
1
=z.
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Now, if we replace all the x with ﬁ7 we will get

() (),

and doing the same replacement again gives us

(1Y e (1)

Summing these two equations, together with the original equation, gives us that

2| (25 )+ (1-3) +a)| =32 w2 v (1-1)].

and therefore
1 1 3 1 1
1—= = 1—=).
h(l—x>+h( x)—i—h(az) 5 [x+1—m+< x)}

Subtracting the second equation from this, gives that

o= (3= () [ -(-3)

Plugging this back to the original equation, we have

1 1 1
LHS:§—1’+§—1_33
N * 11—z

— RHS,

which satisfies the original functional equation. Therefore, the original equation solves to
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2016.3 Question 12

1. Let X ~ B(100n,0.2). We have u = 100n - 0.2 = 20n, and 02 = 100n - 0.2 - 0.8 = 16n.
We have that

as desired, where we applied the Chebyshev Inequality for k = y/n > 0.

2. Let X ~ Po(n). Therefore, p = E(X) = n, 0 = y/Var(X) = y/n. To show the desired inequality
is equivalent to showing that

n

L+n+ %+ + &

1
en n

as desired, where we applied the Chebyshev Inequality for k = /n > 0.
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2016.3 Question 13

For a random variable X with E(X) = y and Var(X) = o2, we have

E[(X —p)']

K(X) = I

-3

g

We have Y = X — a. Therefore, E(Y) = . — a and Var(Y) = o2.

k(YY) = g 3
Bl(X-a) - (n-0)']
- 4
o
E[X -
- 1
o
= ﬂ(X)’
as desired.
1. Let X ~ N(0,02), u = 0. Notice that
E(X?)
K(X) = pran 3
X has p.d.f.
1 2
fx(z) = U\/%GXP (_2 2>
Therefore,

B(X*) =

Now, consider using integration by parts. Notice that

z? x z?
dexp <_M) =3 Xp (_W> dz,

and therefore, using integration by parts, we have

2
/x4exp( 2x2>d33

2
:—az/mgdexp (—;)

Therefore, considering the definite integral, we have

+oo 2
E(X*) = / ztexp ( ’ ) dx
oV 2r 202

wa

[3 oV2r - o - 0]

Il
[OV)
)
.Hk

+oo 2
/ zt exp < a: ) dz.
o2 202

2 2

2,3 x 37 3

-0 [m exp <_W> —/eXp (_W> d(z )}
2

a2 2 _Z 2.3 _Z

=30 /a: exp( 202>dx o°x exp( o=

+o0 x2 2
3 / 2?exp | ——— |dz — [23exp | ———
o 202 o
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Therefore,

as desired.

An alternative solution exists using generating functions.

Recall that a general normal distribution N(y, 0?) has MGF
2

M(t) = exp(ut + %tQ),

and hence

Mx (t) = exp (0221?2)

Therefore,

and the result follows.

2. Notice that

T4

_ 4 4 4 3 4 2v2
=X (g 2 | (s (o)
a a<b
Y PR AR PRIASAY
1,1,2) 77"« 1,1,1,1)°*7"°°¢

a<b<c a<b<c<d T
= Z YA+ Z(4Yay,,3 + 6Y2Y2) + Z 12Y,Y, Y2 + Z 24Y,Y, Y. Yy,
a a<b a<b<c a<b<c<d

where
n n! k
= a; =n
(al,ag,...,ak) ailas! ... ap! ; '
stands for the multinomial coefficient.
Note that E(Y,) = 0 for any r = 1,2,...,n. Therefore,

E(Y,Y?) = E(Y,) E(Y?) = 0,
E(Y,Y,Y?) = E(Y,) E(Y,) E(Y2) = 0,
E(Y,Y,Y.Yy) = E(Y,) E(Y;) E(Y.) E(Yy) =0
Therefore,
E(TY) =Y E(YH + Y 6EY2Y?)
a a<b
n n—1 n
=2 B +6) 0 >0 BODE),
r=1 r=1s=r+1

as desired.

3. Let V; = X; —pfori=1,2,...,n, and p = E(X),0% = Var(X) = Var(Y) with E(Y) =0
Therefore, let T=>""Y; = ' X; — nu, we must have E(T) = 0 and Var(T) = no?.
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But since the kurtosis remains constant with shifts, we must have that x(Y;) = &, and

Hence, we have

as desired.

E(T%)
(no?)?
S B 4605 S 0 B BOY)
n2g4 a
1 GKEYY) 62 & ot
DD D DD D=tk
r=1 r=1s=r+1

1 6 (n
3n+3n(n—1) — 3n?
+ 2
n

K
n
K
=40
n
K
)
n
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