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2010.3 Question 1

1. Notice that

C =
1

n+ 1

n+1∑
k=1

xk

=
1

n+ 1

(
n∑

k=1

xk + xn+1

)

=
1

n+ 1
(nA+ xn+1) .

2. By expanding the brackets,

B =
1

n

n∑
k=1

(xk −A)2

=
1

n

n∑
k=1

(x2
k − 2Axk +A2)

=
1

n

[
n∑

k=1

x2
k − 2A

n∑
k=1

xk +A2n

]

=
1

n

n∑
k=1

x2
k − 2A

1

n

n∑
k=1

xk +A2

=
1

n

n∑
k=1

x2
k − 2A2 +A2

=
1

n

n∑
k=1

x2
k −A2.

3. Similarly, we have

D =
1

n+ 1

n+1∑
k=1

x2
k − C2.

Hence,

D =
1

n+ 1

n+1∑
k=1

x2
k − C2

=
1

n+ 1

(
n∑

k=1

x2
k + x2

n+1

)
−
(

1

n+ 1
(nA+ xn+1)

)2

=
1

n+ 1

(
n(B +A2) + x2

n+1

)
−
(

1

n+ 1
(nA+ xn+1)

)2

=
1

(n+ 1)2
[
(n+ 1)

(
n(B +A2) + x2

n+1

)
− (nA+ xn+1)

2
]

=
1

(n+ 1)2
(
nA2 + n(n+ 1)B + nx2

n+1 − 2nAxn+1

)
=

n

(n+ 1)2
(
A2 + (n+ 1)B + x2

n+1 − 2Axn+1

)
=

n

(n+ 1)2

[
(A− xn+1)

2
+ (n+ 1)B

]
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Hence,

(n+ 1)D − nB =
n

n+ 1

[
(A− xn+1)

2
+ (n+ 1)B

]
− nB

=
n

n+ 1
· (A− xn+1)

2
+ nB − nB

=
n

n+ 1
· (A− xn+1)

2

≥ 0,

since a square is always non-negative, and hence

(n+ 1)D ≥ nB.

On the other hand, notice that

D −B =
n

(n+ 1)2

[
(A− xn+1)

2
+ (n+ 1)B

]
−B

=
n

(n+ 1)2
(A− xn+1)

2
+

n

n+ 1
B −B

=
n

(n+ 1)2
(A− xn+1)

2 − 1

n+ 1
B,

and hence

D < B ⇐⇒ n

(n+ 1)2
(A− xn+1)

2 − 1

n+ 1
B < 0

⇐⇒ n

(n+ 1)2
(A− xn+1)

2
<

1

n+ 1
B

⇐⇒ (A− xn+1)
2
<

n+ 1

n
B

⇐⇒ −
√

n+ 1

n
B < A− xn+1 <

√
n+ 1

n
B

⇐⇒ −A−
√

n+ 1

n
B < −xn+1 < −A+

√
n+ 1

n
B

⇐⇒ A−
√

n+ 1

n
B < xn+1 < A+

√
n+ 1

n
B,

exactly as desired.
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2010.3 Question 2

1. We have by definition

cosh a =
ea + e−a

2
.

Notice that

1

x2 + 2x cosh a+ 1
=

1

x2 + (ea + e−a)x+ (ea · e−a)

=
1

(x+ ea)(x+ e−a)

=

(
1

x+ e−a
− 1

x+ ea

)
· 1

ea − e−a
,

and hence ∫
dx

x2 + 2x cosh a+ 1
=

ln|x+ e−a| − ln|x+ ea|
ea − e−a

=
1

ea − e−a
ln

∣∣∣∣x+ e−a

x+ ea

∣∣∣∣.
Therefore, ∫ 1

0

dx

x2 + 2x cosh a+ 1
=

1

ea − e−a

[
ln

∣∣∣∣1 + e−a

1 + ea

∣∣∣∣− ln

∣∣∣∣e−a

ea

∣∣∣∣]
=

1

ea − e−a

[
ln

∣∣∣∣ 1 + e−a

ea (1 + e−a)

∣∣∣∣+ 2a

]
=

1

ea − e−a
[−a+ 2a]

=
a

ea − e−a

=
a

2 sinh a
.

2. For the first integral, we have by definition

sinh a =
ea − e−a

2
.

Notice that

1

x2 + 2x sinh a− 1
=

1

x2 + (ea − e−a)x− (ea · e−a)

=
1

(x+ ea)(x− e−a)

=

(
1

x− e−a
− 1

x+ ea

)
· 1

ea + e−a
,

and hence ∫
dx

x2 + 2x sinh a− 1
=

ln|x− e−a| − ln|x+ ea|
ea + e−a

=
1

ea + e−a
ln

∣∣∣∣x− e−a

x+ ea

∣∣∣∣.
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Therefore, ∫ ∞

1

dx

x2 + 2x sinh a− 1
=

1

ea + e−a
·
[
ln

∣∣∣∣x− e−a

x+ ea

∣∣∣∣]∞
1

=
1

2 cosh a
·
[
ln 1− ln

∣∣∣∣1− e−a

1 + ea

∣∣∣∣]
=

1

2 cosh a
· ln 1 + ea

1− e−a

=
1

2 cosh a
·
(
a+ ln

1 + e−a

1− e−a

)
=

1

2 cosh a
·
(
a+ ln

e
a
2 + e−

a
2

e
a
2 − e−

a
2

)
=

1

2 cosh a
·
(
a+ ln coth

a

2

)
.

For the second integral, notice that

1

x4 + 2x2 cosh a+ 1
=

1

ea − e−a

(
1

x2 + e−a
− 1

x2 + ea

)
,

and hence ∫ ∞

0

dx

x4 + 2x2 cosh a+ 1
=

1

2 sinh a

∫ ∞

0

(
1

x2 + e−a
− 1

x2 + ea

)
dx

=
1

2 sinh a

[
e

a
2 arctan

(
e

a
2 x
)
− e−

a
2 arctan

(
e−

a
2 x
)]∞

0

=
1

2 sinh a

[(
e

a
2
π

2
− e−

a
2
π

2

)
−
(
e

a
2 0− e−

a
2 0
)]

=
1

2 sinh a
· (e a

2 − e−
a
2 ) · π

2

=
π sinh a

2

2 sinh a

=
π sinh a

2

4 sinh a
2 cosh

a
2

=
π

4 cosh a
2

.
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2010.3 Question 3

An n-th root of unity takes the form exp( kn · 2πI) for k = 0, . . . , n− 1, and specially, it is a primitive nth

root of unity, if and only if the fraction k
n is irreducible (being reducible is equivalent to it being another

mth root of unity where 0 < m < n), and this is equivalent to gcd(k, n) = 1.
The two primitive 4th roots of unity are when k = 1 or 3, which gives i and −i as the two primitive

roots.
Hence,

C4(x) = (x− i)(x+ i) = x2 + 1.

1. For n = 1, k = 0, and gcd(0, 1) = 1. So the only 1st root of unity is primitive, and hence

C1(x) = x− 1.

For n = 2, k = 0 or 1, and only gcd(1, 2) = 1. So the only primitive 2nd root of unity is
exp

(
1
2 · 2πi

)
= −1, and hence

C2(x) = x+ 1.

For n = 3, k = 1 or 2 gives gcd(k, n) = 1. Hence, the primitive 3rd roots of unity are all 3rd roots
of unity apart from x = 1. Hence,

C3(x) =
x3 − 1

x− 1
= x2 + x+ 1.

For n = 5, k = 1, 2, 3, 4 or 5 gives gcd(k, n) = 1. Hence, the primitive 5th roots of unity are all 5th
roots of unity apart from x = 1. Hence,

C5(x) =
x5 − 1

x− 1
= x4 + x3 + x2 + x+ 1.

For n = 6, k = 1 or 5 gives gcd(k, n) = 1. Hence,

C6(x) =

(
x− exp

(
1

6
· 2πi

))(
x− exp

(
5

6
· 2πi

))
=

(
x− exp

(
1

3
· πi
))(

x− exp

(
−1

3
· πi
))

= x2 − 2 · cos
(
1

3
· π
)
x+ 1

= x2 − x+ 1.

2. Notice that

x4 + 1 = (x2 + i)(x2 − i)

=

[
x2 − exp

(
3

4
· 2πi

)][
x2 − exp

(
1

4
· 2πi

)]
=

[
x− exp

(
3

8
· 2πi

)][
x− exp

(
7

8
· 2πi

)][
x− exp

(
1

8
· 2πi

)][
x− exp

(
5

8
· 2πi

)]
,

and the roots to Cn(x) are

exp

(
1

8
· 2πi

)
, exp

(
3

8
· 2πi

)
, exp

(
5

8
· 2πi

)
, exp

(
7

8
· 2πi

)
.

Since the number on the denominator is 8 (and all fractions are reduced), we can conclude that if
n exists, then n = 8.

On the other hand, for n = 8, only k = 1, 3, 5 and 7 give gcd(k, n) = 1. This means that n = 8
satisfies that the primitive 8-th roots of unity being

exp

(
1

8
· 2πi

)
, exp

(
3

8
· 2πi

)
, exp

(
5

8
· 2πi

)
, exp

(
7

8
· 2πi

)
.

Hence, n = 8 satisfies Cn(x) = x4 + 1, and hence n = 8.
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3. Since p is prime, for k = 1, 2, 3, . . . , p − 1, we must have gcd(k, p) = 1 (and for k = 0, gcd(k, p) =
p ̸= 1). This means that all the pth roots of unity apart from x = 1 will be primitive pth roots of
unity, and hence

Cp(x) =
xp − 1

x− 1
= 1 + x+ x2 + · · ·+ xp−1.

4. A root of Cq must take the form of

exp

(
Q

q
· 2πi

)
where 0 ≤ Q < q, gcd(Q, q) = 1.

A root of Cr must take the form of

exp

(
R

r
· 2πi

)
where 0 ≤ R < r, gcd(R, r) = 1, and a root of Cs must take the form of

exp

(
S

s
· 2πi

)
where 0 ≤ S < s, gcd(S, s) = 1.

Since a root to Cs must be a root to the right-hand side of the equation, and hence must be a root
to the left-hand side of the equation, we have

exp

(
Q

q
· 2πi

)
= exp

(
S

s
· 2πi

)
.

Since 0 ≤ Q
q ,

S
s < 1, we must have

Q

q
=

S

s
,

and since they are both reduced fractions, we must have q = s.

Similarly, we also have q = r.

This means
Cq(x) = Cq(x)

2,

and hence
Cq(x)(Cq(x)− 1) = 0.

Since Cq is a polynomial, this means either Cq(x) = 0 or Cq(x) = 1, both of which are not possible
given q is a positive integer. For the first case, this is impossible since this polynomial has infinitely
many roots, but there are only finitely many qth roots of unity, and hence only finitely many
primitive qth roots of unity.

For the second case, this means that there is no primitive qth roots of unity. But for k = 1,
gcd(k, q) = 1, and hence there must be a primitive qth root of unity

exp

(
1

q
· 2πi

)
,

and this must be impossible.

Hence, there are no positive integers q, r and s such that

Cq(x) = Cr(x) · Cs(x).
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2010.3 Question 4

1. Since α is a common root of both equations, we have

α2 + aα+ b = 0, α2 + cα+ d = 0.

Since 0 = 0, we have

α2 + aα+ b = α2 + cα+ d

aα+ b = cα+ d

(a− c)α = −(b− d)

α = −b− d

a− c
,

given that a ̸= c.

We first prove the only-if direction of the statement. Putting this back to the first original equation,
we have (

−b− d

a− c

)2

+ a ·
(
−b− d

a− c

)
+ b = 0,

and hence multiplying both sides by (a− c)2, we get

(b− d)2 − a(b− d)(a− c) + b(a− c)2 = 0,

as desired.

The if direction of the statement is as follows. Given this equation, dividing both sides by (a− c)2

gives (
−b− d

a− c

)2

+ a

(
−b− d

a− c

)
+ b = 0,

and putting x = − b−d
a−c into the second equation gives

x2 + cx+ d =

(
−b− d

a− c

)2

+ c

(
−b− d

a− c

)
+ d

=
1

(a− c)2
[
(b− d)2 − c(b− d)(a− c) + d(a− c)2

]
=

1

(a− c)2
[
(b− d)2 − a(b− d)(a− c) + a(b− d)(a− c)− c(b− d)(a− c) + d(a− c)2

]
=

1

(a− c)2
[
(b− d)2 − a(b− d)(a− c) + (b− d)(a− c)2 + d(a− c)2

]
=

1

(a− c)2
[
(b− d)2 − a(b− d)(a− c) + b(a− c)2

]
= 0.

This still holds if a ̸= c. For the only-if direction, we still have (a − c)α = −(b − d), and hence
(a − c)2α2 = (b − d)2. Putting α into the first equation, and multiplying both sides by (a − c)2

gives us
(a− c)2α2 + a(a− c)α(a− c) + b(a− c)2 = 0,

and hence
(b− d)2 − a(b− d)(a− c) + b(a− c)2 = 0.

For the if-direction, if a = c, then (b − d)2 = 0 and hence b = d. This means the two quadratic
equations are identical, which naturally leads to at least one common root.

2. We first show that the original two equations have at least one common root if and only if x2 +
ax+ b = 0 and x2 + (q − b)x+ r = 0 share a root.

The only-if direction is as follows. Multiplying both sides of the first equation by x, we get

x3 + ax2 + bx = 0,
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and hence subtracting this from the second equation gives us

x2 + (q − b)x+ r = 0,

which means the common root of the original two equations must be a root to the new equation
as well.

For the if direction, multiplying both sides of x2 + ax + b = 0 by x and adding this to the new
equation gives us that

x3 + (a+ 1)x2 + qx+ r = 0.

This means the common root of x2 + ax+ b = 0 and x2 + (q − b)x+ r = 0 must be a root to the
cubic equation as well.

Now, the equations x2 + ax+ b = 0 and x2 + (q − b)x+ r = 0 share a root, if and only if

(b− r)2 − a(b− r)(a− (q − b)) + b(a− (q − b))2 = 0,

which is equivalent to

(b− r)2 − a(b− r)(a+ b− q) + b(a+ b− q)2 = 0.

The two equations are equivalent to

x2 +
5

2
x+ b = 0, x3 +

7

2
x+

5

2
x+

1

2
= 0.

Let a = 5
2 , b = b, q = 5

2 , r = 1
2 , and the two equations have at least common root if and only if(

b− 1

2

)2

− 5

2

(
b− 1

2

)(
5

2
+ b− 5

2

)
+ b

(
5

2
+ b− 5

2

)2

= 0.

This simplifies to
(2b− 1)2 − 5(2b− 1)b+ 4b3 = 0,

which is equivalent to
4b3 − 6b2 + b+ 1 = 0.

Notice that
4b3 − 6b2 + b+ 1 = (b− 1)(4b2 − 2b− 1),

and hence

b1 = 1, b2,3 =
2±

√
22 + 4 · 4
2 · 4

=
1±

√
5

4
.
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2010.3 Question 5

A B

CD

P

Q

R

S

T

The line CP has equation

lCP : y =
1

1− n
x− an

1− n
,

and the line DA has equation lDA : x = 0. Hence, R has coordinates

R

(
0,− an

1− n

)
.

The line CQ has equation
lCQ : y = (1−m)x+ am,

and the line BA has equation lBA : y = 0. Hence, S has coordinates

S

(
− am

1−m
, 0

)
.

The line PQ has equation

lPQ : y = −m

n
x+ am,
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and the line RS has equation

lRS : y = −n(1−m)

m(1− n)
· x− an

1− n
.

Therefore, T must have x-coordinates satisfying

−m

n
x+ am = −n(1−m)

m(1− n)
· x− an

1− n
,

and hence (
n(1−m)

m(1− n)
− m

n

)
x = −a

(
m+

n

1− n

)
,

and hence
n2(1−m)−m2(1− n)

mn(1− n)
· x = −a

(
m(1− n) + n

1− n

)
,

which gives
(n+m−mn)(n−m)

mn(1− n)
· x = −a · m+ n−mn

1− n
.

This means
x =

amn

m− n
,

and hence

y = −m

n
· amn

m− n
+ am =

−am2 + am(m− n)

m− n
=

−amn

m− n
.

This shows that line AT is the line y = −x, while line AC is the line y = x.
Therefore, means that AT is perpendicular to AC.

A B

CD

A′

B′

C ′

D′

T1

T2

T3

T4

Label the square ABCD (in a counter-clockwise sequence), and find two arbitrary points P and Q
on AB and AD respectively, with different distances away from A. Construct the line CP and CQ, and
let their intersections with AD and AB be R and S respectively. Construct the line RS and PQ, and
let them meet at T1. We have T1A is perpendicular to AC.
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Repeating this process (rotating the labelling of A,B,C and D counter-clockwise), we will get T2B,
T3C and T4D, as shown in the diagrams. The square formed by these four lines is A′B′C ′D′ (found
by intersecting the lines). The new square has side length

√
a equal to the length of the diameter, and

hence have area 2a2.
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2010.3 Question 6

1. The coordinates of P1 are
P1(cosφ, sinφ, 0),

and the coordinates of Q1 are
Q1(− sinφ, cosφ, 0).

Since the rotation is about z-axis, the position of R remains unchanged

R1(0, 0, 1).

2. This rotation axis is precisely OQ1, since it is contained in the x-y plane, and is perpendicular to
OP1. Hence, the position of Q remains unchanged, and hence

Q2(− sinφ, cosφ, 0).

If we drop a perpendicular from P2 to the line OP1, and call the intersection be P ′. We can see
from trigonometry that

P2P
′ = sinλ,

and
OP ′ = cosλ.

Hence, the x-coordinate of P2 is cosλ cosφ, and the y-coordinate of P2 is cosλ sinφ. The z-
coordinate of P2 is sinλ, and hence

P2(cosφ cosλ, sinφ cosλ, sinλ).

The relative positions of P,Q and R remains unchanged under rotation, and hence

rR2
= rP2

× rQ2

=

cosφ cosλ
sinφ cosλ

sinλ

×

− sinφ
cosφ
0


=

∣∣∣∣∣∣
ı̂ ȷ̂ k̂

cosφ cosλ sinφ cosλ sinλ
− sinφ cosφ 0

∣∣∣∣∣∣
=

 sinφ cosλ · 0− sinλ cosφ
−(cosφ cosλ · 0 + sinλ · sinφ)

cosφ cosλ · cosφ+ sinφ cosλ · sinφ


=

 − sinλ cosφ
− sinλ sinφ

cos2 φ cosλ+ sin2 φ cosλ


=

− sinλ cosφ
− sinλ sinφ

cosλ

 ,

and hence
R2(− sinλ cosφ,− sinλ sinφ, cosλ).

3. The angle of rotation is the angle between OP0 and OP2, and hence

cos θ =

−−→
OP0 ·

−−→
OP2∣∣∣−−→OP0

∣∣∣ · ∣∣∣−−→OP2

∣∣∣
=

1
0
0

 ·

cosφ cosλ
sinφ cosλ

sinλ


= cosφ cosλ,
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as desired.

The axis of this rotation must be perpendicular to both OP1 and OP2, and hence their cross
product

−−→
OP0 ×

−−→
OP2 =

1
0
0

×

cosφ cosλ
sinφ cosλ

sinλ


=

∣∣∣∣∣∣
ı̂ ȷ̂ k̂
1 0 0

cosφ cosλ sinφ cosλ sinλ

∣∣∣∣∣∣
=

 0
− sinλ

sinφ cosλ


is a vector in the direction of the axis.
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2010.3 Question 7

Since y = cos(m arcsinx), we have

dy

dx
= −m sin(m arcsinx)√

1− x2
,

and

d2y

dx2
= −

m2 cos(m arcsinx) · 1√
1−x2

·
√
1− x2 −m sin(m arcsinx) · (−x) · 1√

1−x2

1− x2

= − m

1− x2

(
m cos(m arcsinx) + x sin(m arcsinx) · 1√

1− x2

)
.

Hence, the left-hand side of the differential equation reduces to

(1− x2)
dy

dx
− x

dy

dx
+m2y

= −m ·
(
m cos(m arcsinx) + x sin(m arcsinx) · 1√

1− x2

)
+

mx sin(m arcsinx)√
1− x2

+m2 cos(m arcsinx)

= −m2 cos(m arcsinx) +m2 cos(m arcsinx)

− mx sin(m arcsinx)√
1− x2

+
mx sin(m arcsinx)√

1− x2

= 0,

as desired.
Differentiating both sides of this equation with respect to x, we get

(−2x)
d2y

dx2
+ (1− x2)

d3y

dx3
− dy

dx
− x

d2y

dx2
+m2 dy

dx
= 0,

which reduces to

(1− x2)
d3y

dx3
− 3x

d2y

dx2
+ (m2 − 1)

dy

dx
= 0.

Differentiating both sides with respect to x again, we get

(−2x)
d3y

dx3
+ (1− x2)

d4y

dx4
− 3

d2y

dx2
− 3x

d3y

dx3
+ (m2 − 1)

d2y

dx2
= 0,

which reduces to

(1− x2)
d4y

dx4
− 5x

d3y

dx3
+ (m2 − 4)

d2y

dx2
= 0.

The conjecture is for all n ≥ 0,

(1− x2)
dn+2y

dxn+2
− (2n+ 1)

dn+1y

dxn+1
+ (m2 − n2)

dny

dxn
= 0.

The base case where n = 0 is already shown. We show the inductive step. Assume this statement is
true for some n = k, i.e.

(1− x2)
dk+2y

dxk+2
− (2k + 1)x

dk+1y

dxk+1
+ (m2 − k2)

dky

dxk
= 0.

Differentiating both sides with respect to x gives

(−2x)
dk+2y

dxk+2
+ (1− x2)

dk+3y

dxk+3
− (2k + 1)

dk+1y

dxk+1
− (2k + 1)x

dk+2y

dxk+2
+ (m2 − k2)

dk+1y

dxk+1
= 0,

which reduces to

(1− x2)
dk+3y

dxk+3
− (2k + 3)x

dk+2y

dxk+2
+ (m2 − (k + 1)2)

dk+1y

dxk+1
= 0.
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This is precisely the statement for when n = k + 1.
Hence, by the principle of mathematical induction, the conjecture holds for all integers n ≥ 0.
Now, we evaluate this at x = 0, and we have

dn+2y

dxn+2

∣∣∣∣
x=0

+ (m2 − n2)
dny

dxn

∣∣∣∣
x=0

= 0

for all n ≥ 0, which rearranged gives

dn+2y

dxn+2

∣∣∣∣
x=0

= (n2 −m2)
dny

dxn

∣∣∣∣
x=0

.

Notice that
y|x=0 = cos(m arcsin 0) = 1,

and
dy

dx

∣∣∣∣
x=0

= −m sin(m arcsin 0)√
1− 02

= 0

Hence,
d2y

dx2

∣∣∣∣
x=0

= (02 −m2) y|x=0 = −m2,

and
d3y

dx3

∣∣∣∣
x=0

= (12 −m2)
dy

dx

∣∣∣∣
x=0

= 0,

and
d4y

dx4

∣∣∣∣
x=0

= (22 −m2)
d2y

dx2

∣∣∣∣
x=0

= −m2(22 −m2),

In general, we have
d2n+1y

dx2n+1

∣∣∣∣
x=0

= 0,

and
d2ny

dx2n

∣∣∣∣
x=0

=

n−1∏
k=0

(4k2 −m2) = (−1)n
n−1∏
k=0

(m2 − 4k2)

for all integers n ≥ 0.
Hence, the Maclaurin series for y satisfy that

y =

∞∑
n=0

dny
dxn

∣∣∣
x=0

xn

n!

=

∞∑
n=0

(−1)n
∏n−1

k=0(m
2 − 4k2)x2n

(2n)!

= 1− m2x2

2!
+

m2(m2 − 22)x4

4!
− · · · .

In the case where m is even, notice that when m = 2k, m2 − 4k2 = 0, and so for all n ≥ m
2 + 1,

n−1∏
k=0

(m2 − 4k2)x2n = 0,

and hence this infinite sum becomes finite:

y =

∞∑
n=0

(−1)n
∏n−1

k=0(m
2 − k2)x2n

(2n)!

=

m
2∑

n=0

(−1)n
∏n−1

k=0(m
2 − k2)x2n

(2n)!
.

Now, let x = sin θ, we have θ = arcsinx since |θ| < 1
2π, and y = cosmθ. Hence,

cosmθ = 1− m2 sin2 θ

2!
+

m2(m2 − 22) sin4 θ

4!
− · · · ,

where the sum is finite (and hence a polynomial), and the degree of this polynomial is m;
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2010.3 Question 8

Since P (x) = Q(x)R′(x)−Q′(x)R(x), we notice that

P (x)

Q(x)2
=

d

dx

R(x)

Q(x)
.

Hence, ∫
P (x)

Q(x)2
dx =

R(x)

Q(x)
+ C

where C is a real constant.

1. Since R(x) = a + bx + cx2, we have R′(x) = b + 2cx. We let P (x) = 5x2 − 4x − 3 and Q(x) =
1 + 2x+ 3x2, and hence Q′(x) = 6x+ 2.

Hence,
5x2 − 4x− 3 = (1 + 2x+ 3x2)(b+ 2cx)− (6x+ 2)(a+ bx+ cx2).

Notice that

RHS = [6cx3 + (3b+ 4c)x2 + (2b+ 2c)x+ b]− [6cx3 + (6b+ 2c)x2 + (6a+ 2b)x+ 2a]

= (−3b+ 2c)x2 + (−6a+ 2c) + (−2a+ b).

Hence, we have 
−3b+ 2c = 5,

−6a+ 2c = −4 ⇐⇒ 3a− c = 2,

−2a+ b = −3.

Notice that
1 · (−3b+ 2c) + 2 · (3a− c) + 3 · (−2a+ b) = 0,

and
1 · 5 + 2 · 2− 3 · 3 = 0,

which means that these three equations are linearly dependent. Hence, let a = 0, and hence b = −3,
c = −2, R(x) = −3x− 2x2, which gives∫

5x2 − 4x− 3

(1 + 2x+ 3x2)2
dx =

−3x− 2x2

1 + 2x+ 3x2
+ C1.

Letting a = 1, and hence b = −1, c = 1, R(x) = 1− x+ x2, which gives∫
5x2 − 4x− 3

(1 + 2x+ 3x2)2
dx =

1− x+ x2

1 + 2x+ 3x2
+ C2.

Notice that
1− x+ x2

1 + 2x+ 3x2
− −3x− 2x2

1 + 2x+ 3x2
=

1 + 2x+ 3x2

1 + 2x+ 3x2
= 1,

and the integrals just differ by a constant. Different choices of (a, b, c) lead to results which only
differ by a constant.

2. The differential equation we are attempting to solve is equivalent to

dy

dx
+

sinx− 2 cosx

1 + cosx+ 2 sinx
y =

5− 3 cosx+ 4 sinx

1 + cosx+ 2 sinx
.

The integrating factor is

I(x) = exp

∫
sinx− 2 cosx

1 + cosx+ 2 sinx
dx

= exp

∫
−d(1 + cosx+ 2 sinx)

1 + cosx+ 2 sinx

= exp(− ln|1 + cosx+ 2 sinx|)

=
1

1 + cosx+ 2 sinx
,
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and hence
d

dx

y

1 + cosx+ 2 sinx
=

5− 3 cosx+ 4 sinx

(1 + cosx+ 2 sinx)2
.

Let Q(x) = 1+ cosx+ 2 sinx, and let P (x) = 5− 3 cosx+ 4 sinx. We have Q′(x) = 2 cosx− sinx

Set R(x) = a+ b sinx+ c cosx for some real constant a, b and c. We have R′(x) = b cosx− c sinx.
Hence,

5− 3 cosx+ 4 sinx = (1 + cosx+ 2 sinx)(b cosx− c sinx)− (2 cosx− sinx)(a+ b sinx+ c cosx).

We expand the brackets on the right-hand side, and we have

RHS = b cosx− c sinx+ b cos2 x− c cosx sinx+ 2b sinx cosx− 2c sin2 x

− 2a cosx− 2b sinx cosx− 2c cos2 x+ a sinx+ b sin2 x+ c sinx cosx

= (a− c) sinx+ (b− 2a) cosx+ (b− 2c)
(
sin2 x+ cos2 x

)
= (b− 2c) + (a− c) sinx+ (b− 2a) cosx,

and hence by comparing coefficients, we have
b− 2c = 5,

a− c = 4,

−2a+ b = −3.

Notice that
1 · (b− 2c) + (−2) · (a− c) + (−1) · (−2a+ b) = 0,

and
1 · 5 + (−2) · 4 + (−1) · (−3) = 0,

so the system of linear equations is linearly dependent. Hence, set a = 0, and we have b = −3, c =
−4, and we have R(x) = −3 sinx− 4 cosx.

Hence, ∫
5− 3 cosx+ 4 sinx

(1 + cosx+ 2 sinx)2
=

∫
P (x)

Q(x)2
dx

=
R(x)

Q(x)
+ C

= − 3 sinx+ 4 cosx

1 + cosx+ 2 sinx
+ C,

and hence
y

1 + cosx+ 2 sinx
= − 3 sinx+ 4 cosx

1 + cosx+ 2 sinx
+ C,

which means the general solution to the differential equation is

y = −(3 sinx+ 4 cosx) + C(1 + cosx+ 2 sinx).
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2010.3 Question 12

Since

S =

∞∑
n=0

(1 + nd)rn,

we have

(1− r)S = S − rS

=

∞∑
n=0

(1 + nd)rn −
∞∑

n=0

(1 + nd)rn+1

=

∞∑
n=0

(1 + nd)rn −
∞∑

n=1

(1 + (n− 1)d)rn

= 1 +

∞∑
n=1

drn

= 1 +
dr

1− r
,

and hence

S =
1

1− r
+

dr

(1− r)2
,

as desired.
Let X be the number shots taken for Arthur to hit the target for the first time, and we have

X ∼ Geo(a), we would like to show E(X) = 1
a .

The probability mass function for X satisfies

P(X = x) = (1− a)x−1 · a,

and hence

E(X) =

∞∑
x=1

xP(X = x)

= a ·
∞∑
x=1

x(1− a)x−1

= a ·
∞∑
x=0

(1 + x)(1− a)x

= a ·
[

1

1− (1− a)
+

1 · (1− a)

(1− (1− a))2

]
= a ·

[
1

a
+

1− a

a2

]
= a · 1

a2

=
1

a
,

as desired.
Since there is a probability a of Arthur winning on a particular shot, and if Arthur did not hit (with

probability (1−a)), then there is a probability b of Boadicea winning on the shot, and (1−b) probability
that the first two shots both miss, and the game continues as if nothing happened in the first two shots.
Therefore,

(α, β) = a(1, 0) + (1− a)b(0, 1) + (1− a)(1− b)(α, β),

and hence {
α = a+ (1− a)(1− b)α = a+ a′b′α,

β = (1− a)b+ (1− a)(1− b)β = a′ + a′b′β,
=⇒


α =

a

1− a′b′
,

β =
a′b

1− a′b′
.
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Let the expected number of shots in the contest be e. By the linearity of the expectation, we have

e = a · 1 + a′b · 2 + a′b′ · (e+ 2),

where the (e + 2) comes from when Arthur and Boadicea both miss their initial shots (for the 2), and
the game continues (for the e), and hence

e =
a+ 2a′b+ 2a′b′

1− a′b′
=

a+ 2a′

1− a′b′
=

2− a

1− a′b′
.

On the other hand, we have

α

a
+

β

b
=

1

1− a′b′
+

1− a

1− a′b′
=

2− a

1− a′b′
,

and therefore

e =
α

a
+

β

b
,

as desired.
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2010.3 Question 13

Since Z1 and Z2 are independent, we have

Cov(Z1, Z2) = 0,

and hence

Corr(Z1, Z2) =
Cov(Z1, Z2)√
Var(Z1)Var(Z2)

=
0√
1 · 1

= 0.

For Y2, we have

E(Y2) = E

(
ρ12Z1 +

√
1− ρ212Z2

)
= ρ12 E(Z1) +

√
1− ρ212 E(Z2)

= ρ12 · 0 +
√
1− ρ212 · 0

= 0,

Var(Y2) = Var(ρ12Z1 +
√

1− ρ212Z2)

= ρ212 Var(Z1) + (1− ρ212)Var(Z2)

= ρ212 · 1 + (1− ρ212) · 1
= 1,

and hence

Corr(Y1, Y2) =
Cov(Y1, Y2)√
Var(Y1)Var(Y2)

=
E(Y1Y2)− E(Y1) E(Y2)√

1 · 1

= E

(
ρ12Z

2
1 + ρ12

√
1− ρ212Z1Z2

)
− 0 · 0

= ρ12 E(Z
2
1 ) + ρ12

√
1− ρ212 E(Z1Z2)

= ρ12
(
Var(Z1) + E(Z1)

2
)
+ ρ12

√
1− ρ212 E(Z1) E(Z2)

= ρ12
(
1 + 02

)
+ ρ12

√
1− ρ212 · 0 · 0

= ρ12.

For Y3, we have

Var(Y3) = Var(aZ1 + bZ2 + cZ3)

= a2 Var(Z1) + b2 Var(Z2) + c2 Var(Z3)

= a2 + b2 + c2

= 1,

and hence a2 + b2 + c2 = 1.
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For the correlation, we have

Corr(Y1, Y3) =
Cov(Y1Y3)√

Var(Y1)Var(Y3)

=
E(Y1Y3)− E(Y1) E(Y3)√

1 · 1

=
E(aZ2

1 + bZ1Z2 + cZ1Z3)− 0 · 0
1

= aE(Z2
1 ) + bE(Z1Z2) + cE(Z1Z3)

= a(Var(Z1) + E(Z1)
2) + bE(Z1) E(Z2) + cE(Z1) E(Z3)

= a(1 + 02) + b · 0 · 0 + c · 0 · 0
= a

= ρ13,

and

Corr(Y2, Y3) =
Cov(Y2Y3)√

Var(Y2)Var(Y3)

=
E(Y2Y3)− E(Y2) E(Y3)√

1 · 1

=
E
(
(aZ1 + bZ2 + cZ3) ·

(
ρ12Z1 +

√
1− ρ212Z2

))
− 0 · 0

1

= E

(
aρ12Z

2
1 + b

√
1− ρ212Z

2
2

)
= aρ12(Var(Z1) + E(Z1)

2) + b
√
1− ρ212(Var(Z2) + E(Z2)

2)

= aρ12 + b
√

1− ρ212

= ρ23,

since all the cross-term expectation is 0, i.e. for i ̸= j, E(ZiZj) = E(Zi) E(Zj) = 0. Hence,

b =
ρ23 − ρ12ρ13√

1− ρ212
,

and therefore,

c =
√
1− a2 − b2 =

√
1− ρ213 −

(ρ23 − ρ12ρ13)
2

1− ρ212
.

We could have Xi = µi + σiYi for i = 1, 2, 3, since

E(Xi) = µi + σi E(Yi) = µi + σi · 0 = µi,

and
Var(Xi) = σ2

i Var(Yi) = σ2
i · 1 = σ2

i .
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As for correlation, we notice that for any random variables U, V , we have

Corr(aU + b, cU + d) =
Cov(aU + b, cV + d)√
Var(aU + b)Var(cV + d)

=
E((aU + b)(cV + d))− E(aU + b) E(cV + d)√

a2 Var(U)c2 Var(V )

=
acE(UV ) + bcE(V ) + adE(U) + bd− (aE(U) + b)(cE(V ) + d)

ac
√
Var(U)Var(V )

=
acE(UV ) + bcE(V ) + adE(U) + bd− acE(U) E(V )− bcE(V )− adE(U)− bd

ac
√
Var(U)Var(V )

=
ac(E(UV )− E(U) E(V ))

ac
√

Var(U)Var(V )

=
Cov(U, V )√
Var(U)Var(V )

= Corr(U, V ),

which shows linear coding does not affect the correlation. This implies

Corr(Xi, Xj) = Corr(Yi, Yj) = ρij

for i ̸= j. Therefore, Xi = µi + σiYi for i = 1, 2, 3 satisfies the desired.
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