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2016.3 Question 1

Notice that
/ _/*W da _/*“ da
e (@420 40" Joo ((z4a)+ (0 —a?)"

1. Let  +a = vb—a?tanu. When 2 — —o0, u — —73

Z,and when x — 400, u — g We have also

dz =d(xz +a) =dvb—a?tanu
=+/b—a?dtanu
= b — a2sec® udu.

Therefore, we have

/+°° dx

I =

o (@+a)?+(b—a?)

/’2' Vb — a2 sec? udu
(Vb —a?tan u) + (b—a?)

_/ Vb —a?seczudu

)z (b—a?)(tan®u + 1)

sec? u du

—z Vb Vb —aZsec?u
,r
2

as desired.

2. Using the same substitution, we have

I _/+°° dz
" e a2+ (b —a?)m
_/72r Vb —a?sec? udu

z [(b—a?)sec?u]”

du
\/b—a2/ b—a?)secu]"

Therefore,

2n(b — a*) 41 = (2n — 1)1,
is equivalent to

du
2nvb — a? 7 = (2
" ¢ /’2' b—a2 secgu] = (n - \/b—a2 —z= [(b—a?)sec?u]"”
is equivalent to
Pl du 3 du
2n(b — a? / _ 2n —1 /
( ) = [(b— a?) sec? ul” ( ) —z [(b— a?)sec? u]

is equivalent to
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Notice that

. tanu ¢ z _
= lm |——| — tanudsec™ 2" u
a3 |sec?u |, _

~
z
. . — a — —
= hrr}r [smucosQn lu}b —/ —2nsecutanusec” 2" yutanudu
a—% _
b—>—3%

3 tan?ud
:2n/ n<udu

sec2n

us
2

2

2n[
2n/_

[NEIN

(sec?u — 1) du

sec2n

du 2 du
—— 2n —
sec< T4y, _= sec"uy

Il I
RENVS

NIE]
INE

This means

e
[N

du

sec2m ¢’

(2n — 1)/_

which is exactly what was desired.

du
— =2n
sec<" T4y _

[ME)
[ME)

3. Proof by induction:

e Base Case. When n =1,

™
LHszll - ﬁ,

RHS — s 2-1-2\ T 0\ m
Tzl —g2)l-3\ 1-1 ) \b—a2\0) Vh—aZ

e Induction Hypothesis. Assume for some n = k € N, we have

T 2n — 2
I, = — .
22n-2(p — g2)n=3 \ n — 1

e Induction Step. When n =k + 1,

In:Ik+1
_ %kl
“2(k+D)(b—a?) "

B 2k +1 T 2%k — 2
T2k +1)(b—a?) 226-2(p— q2)k3 < k-1 >
B 7r (2k—2)!  (2k+1)(2k +2)
C22k(h—g2)k+3 (k= DIk —1)!  (k+1)?

B T 2k!

22k (h — q2)k+3 KR!

_ m 2k
C22k(h—a2)k+3 \ k

_ U 2n —2
_22n72(b_a2)n—% n—1)
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Therefore, by the principle of mathematical induction, for n € N|

I ™ 2n — 2
"_22n72(b7a2)n—% n—1),"

as desired.
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2016.3 Question 2

1. For y? = 4ax, we have z = %, and therefore
dr 2y
dy  4a’

Therefore, the normal through @, lg satisfies that

4a
2 2aq

lg:7—aq* = — (y — 2aq),

ie.
lg : q(z — ag®) = — (y — 2aq).
Since P € lg, we must have

q(ap® — aq®) = — (2ap — 2aq)
aq(p+q)(p —q) = —2a(p — q)

P+ q° = 2
CHpg+2=0
as desired.
2. We also have
24+ pr+2=0.

Since q # r, q,r are the solutions to the equation
2?24+ pr+2=0,

and therefore ¢ +r = —p, qr = 2.
Note that the equation for QR satisfies that

2ar —2aq 2

MoR = ar? —aq>  r4q
Therefore, lgg satisfies that
lor 1y =200 = —— (v —aq’)
Y= r—?—q (x—an—l—r;q-Qaq)
Yy = rtq (sc—aq2+aq2—|—aqr)
y= @+ oan)

2
y=——(+ 2a).
p

This passes through a fixed point (—2a, 0).
3. OP has equation y = iaT’;x, which is y = 2?”0. Therefore, since T'= OP N QR, xr must satisfy that

2 2
——(xz + 2a) = —x,
p p

—(z+2a)==x
T = —a.
Therefore, yr = —2?“, T (—a, —%) lies on the line x = —a which is independent of p.
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2a

P

_ 2a

The distance from the z-axis to T is =

Notice that since gr = 2, ¢ and r must take the same parity, and therefore |p| = |q| + |r|. By the

AM-GM inequality, we have

lal + |7 > 2V/]q] - Ir] = 2v2,
with the equal sign holding if and only if |¢| = |r|, ¢ = r, which is impossible.
Therefore, |p| > 2+/2 and therefore ‘2?“‘ < /2 as desired.
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2016.3 Question 3
1. We have that

d e"P(z)  Qz)[e"P'(z) + e"P(z)] — Q' (z)e"P(x)
dz Q(x) Q(z)?
_ 2 [Q@)P'(2) + Q) P(z) — Q' (z) P(x)]
Q(x)?
L 13 =2
(2 +1)

Therefore, we have

[Q(2)P'(2) + Q(z)P(z) — Q'()P(x)] _ 2° -2
Q(z)? (x+1)2

(z+1)?[Q@)P'(2) + Q(z) P(2) — Q' (2)P(x)] = Q(2)* (" — 2) .

If we plug in x = —1 on both sides, we have LHS = 0 and RHS = Q(—1)2 - (-3).
Therefore, Q(—1)> =0, Q(—1) =0

Since Q(z) € Plx], we must have

(z+1) | Qx)

as desired.

Therefore, deg Q > 1, degRHS = 3 + 2deg Q.

If deg P = —o0, P(x) = 0,LHS = 0 which is impossible.

If deg P =0, P(z) = C € R\ {0}, LHS = C(x+1)2Q(x), deg LHS = deg ¢ + 2, which is impossible.
Therefore, we have deg P’ = deg P — 1. Hence,

deg Q(z)P'(z) = deg P'(z)Q(z) = deg P + deg Q — 1,
and

deg Q(2)P(x) = deg P + deg Q.

Therefore,
deg LHS = 2 4 deg P + deg @ = deg RHS,

which gives
deg P =deg@Q + 1,

as desired.
When Q(z) = z + 1, let P(x) = ax? + bz + ¢ where a # 0. We have P'(z) = 2ax + b. Therefore,

(z +1)*[Q2)P'(2) + Q(z) P(z) — Q' (2)P(x)] = Q(x)* ($3—2)
Q(2)P'(x) + Q(2)P(x) — Q'(w)P(z) = 2* —

(x +1)(2ax +b) + (x + 1)(az? + bx +¢) — (ax® +bx +c) = 2> — 2
(z +1)(2az +b) 4+ z(az® + bz +¢) = 23 — 2
az® + (2a + b)2* + (2a+b+c)r +b= 2> — 2.

This solves to (a,b,c) = (1, —2,0). Therefore, P(x) = 22 — 2x.
2. In this case, we must have that
(z +1) [Q(z)P'(x) + Q(z) P(z) — Q'(2) P(x)] = Q()*.

Therefore, Q(z) = (z + 1)R(z) for some R(x) € P[z]. We may assume P(—1) # 0.
Hence, Q'(z) = (z + 1)R'(z) + R(x)
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Plugging this in gives us
(z +1D)R(z)P'(z) + (z + 1)R(z)P(z) — [(x + 1)R(z) + R(x)] P(z) = (z + 1)R(z)?,
which simplifies to

(2 + 1) [R(@)P'(z) + R(2)P(x) — R'(2)P(x)] — R(z)P(x) = (z + 1) R(x)”.

Let z = —1, and we can see z + 1 divides R(z), since x + 1 can’t divide P(x).
Therefore, let R(x) = (z + 1)S(x), therefore R'(z) = S(x) + (z + 1)5(x).
This gives

(x +1)S(z) [P (z) + P(x)] — [S(z) + (z + 1)S"(2)] P(z) — S(z)P(z) = (z + 1)25(z)?,
which simplifies to

(24 1) [S(2)P'(2) + S(2) P(x) — ' () P(x)] - 25(2)P(x) = (x + 1)*S(x)>.

Therefore, we can see that x 4+ 1 divides S(x) by similar reasons.

Repeating this, we can conclude that there are arbitrarily many factors of x 4+ 1 in Q(x) (proof by
infinite descent), which is impossible.

Formally speaking, let Q(x) = (z + 1)™T'(x) where T(—1) # 0, n € N. Therefore, we have
Q'(z) = n(z+1)""'T(2) + (z +1)"T"(x)
= (@ + 1" [T (@) + (2 + DT (2)].

Therefore,
(z+ 1) [Q(x)P'(x) + Q(2)P(z) — Q' () P(x)] = Q(z)
simplifies to
(z + )" (2) [P'(2) + P(2)] — (¢ +1)" [nT(2) + (¢ + 1)T"(2)] P(x) = (z + 1)*"T(x)?,
which further simplifies to

(2 + 1) [T(2)P'(2) + T(2)P(z) - T'(2) P(a)] - nT(2)P(x) = (& + 1)"T(x)*.

Now, let z = —1, we have that nT(—1)P(—1) = 0. But n # 0, T(—1) # 0, P(—1) # 0, which gives
a contradiction.

Therefore, such P and @ do not exist.
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2016.3 Question 4

1. Notice that
1 1 T " (x—1)

T+ar 142+ (I4a)(14a)  (1+an)(1+am+)

Therefore, we have

N

” N
r r+1) _ ro r+1
—(ltan)(A+amtt) —ao-1[l+a 1+
1 i 1 1
_1'—1T:1 1+27 1+4zrt+!
1 1 1
Trx—1|14z 14 gnt!
For |z| < 1, as n — oo, 21 — 0. Therefore,
- " ! Ly
rzl(l—l—m’“)(l—l—x’““)ix—l 1+
1 —x
-1 14z
o
1 — g2
as desired.
2. Notice that
2 2

sech(ry) sech((r +1)y) =~

4e—ry—(r+1)y
(1 + €—2ry) (1 + e—2(r+1)y)
e—2ry

(1+e29) (14 e 20r+Dy)

=4e7Y

Let © = e=2¥. We have

xT

(1+am) (14 amtl)’

sech(ry) sech((r + 1)y) = 4e™Y

When y > 0, 2 = e~2¥ € (0,1). Therefore,

oo _ 6_2y
Z:lsech(ry) sech((r +1)y) = 4e ym
2
— -y____ -
= 2e €2y — 6722/

= 2e¢7Y cosech(2y)

as desired.

Notice that for all # € R, coshz = cosh(—x), therefore sech x = sech(—zx).
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Therefore,

Z sech(ry) sech((r + 1)y)
oo 0

= Z sech(ry) sech((r + 1)y) + Z sech(ry) sech((r 4+ 1)y)
r=1 T=—00
[e's) —+oo

= Z sech(ry) sech((r + 1)y) + Z sech(—ry) sech((—r + 1)y)
r=1 r=0
[e'e) —+o0

= Z sech(ry) sech((r + 1)y) + Z sech(ry) sech((r — 1)y)
r=1 r=0
[e'e) —+oo

= Z sech(ry) sech((r + 1)y) + Z sech(ry) sech((r — 1)y) + sech(y) sech(0) + sech(0) sech(—y)
r=1 r=2
[e’s] —+oo

= Z sech(ry) sech((r + 1)y) + Z sech((r + 1)y) sech(ry) + 2sechy
r=1 r=1

= 4e” Y cosech(2y) + 2sechy

eV n 2
sinh2y = coshy

2e7Y 2

sinh y cosh y + coshy
2¢7Y + 2sinhy

sinh y coshy
2e7Y +e¥—eY

sinh y cosh y

eV — eV

sinh y cosh y
2 coshy

sinh y cosh y

= 2 cosech y.
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2016.3 Question 5

1. By the binomial theorem, we have

2m—+1
(14 2)?m*! = Z <2mk+ 1) k.

k=0

If we let x = 1, we have
2m—+1 2m + 1
22m+1 — ( >
2 U

2m+1

Since ( ) is a part of the sum, and all the other terms are positive, and there are other terms

which are not (*) (e.g. (*"5') = 1), we therefore must have

<2m + 1) < 92m+1
m

2. Notice that
2m+1\ _ (2m+1)!
( m ) — ml(m+1)!
@2m+1)2m)2m—1)---(m+2)
m!

A number theory argument follows. First, notice that all terms in the product P41 om+1 are
within the numerator. Therefore, we must have

Pm+1’2m+1 | (2m + 1)(2m)(2m — 1) ce (m + 2)

Next, since all the terms in the product are primes, none of the terms will therefore have factors
between 1 and m. This means that

ged (Pm+1,2m+17m!) =1,

i.e. Py41,2m+1 are coprime.

2m+1) _ (27n+1)(27n)(2’r‘n—1) - (m+2)

Therefore, given that ( is an integer, we must therefore have

m
2m+1
Pm+1,2m+1 ‘ ( >7
m
and hence )
m+1
Pm+1,2m+1 S ( m ) < 22m,
as desired.

3. Notice that

P1,2m+1 = Pl,m+1 N Pm+1,2m+l
< 4m+1 X 22nL
— 4m+l 3 4m

_ A2m—+1
=4 ,

as desired.
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4. First we look at the base case when n = 2.
Py o =2, 4% = 16, the original statement holds when n = 2.
Now, we use strong induction. Suppose the statement holds up to some n =k > 2.
If kK = 2m is even, the induction step for 2m — 2m + 1 is already shown in the previous part.

If Kk =2m+ 1 is odd, we must have that k£ 4 1 is even. The only even prime is 2, but since k > 2,
k+1+# 2, and k + 1 must be composite.

Therefore, Py 41 = P1 i < 4k < 4k+1 This completes the induction step.
Therefore, by strong induction, the statement P; ,, < 4™ holds for all n > 2.
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2016.3 Question 6

e In the case where B > A >0 or —B < —A < 0, notice that

Rcosh(z + ) = Rcoshx coshy 4+ Rsinh z sinh .

Therefore, we would like Rsinhy = A and Rcoshy = B.
Since coshy? — sinhy? = 1, we have R%2 = B2 — A2
We also have tanh~ = %, and therefore v = artanh %.

Notice that cosh~y > 0, so R must have the same sign as B.

—IfB>A>0,R=+vB?— A2
—IfB<-A<0, R=—-vVB2%- A2

e In the case where —A < B < A, notice that

Rsinh(z +v) = Rsinhycoshz + Rcoshvsinhz.

Therefore, we would like Rcoshy = A and Rsinhy = B.

Since coshy? — sinh? = 1, we have R? = B2 — A2,

We also have tanh~vy = %, and therefore v = artanh %.

Notice that coshy > 0, so R will have the same sign as A, and hence R = /A2 — B2,
e When B = A, we have

x

Asinhx+Bcoshx:A6 — + A
= Ae”.

e When B = — A, we have

Asinhx—i—Bcoshx:Ae _26 —Ae +26

= Ae™".

Therefore, in conclusion,

v B2 — A2 cosh (w + artanh %) , 0< A< B,

Ae®, 0<B=A,
Asinhx 4+ Bcoshx = ¢ /A2 — BZsinh (a: + artanh %) , —A<B<A,
—Ae %, B=-A<0,

—+/B? — A2 cosh (x + artanh %) , —B<—-A<0.

1. We have sechx = atanhz + b, and hence 1 = asinhx + bcoshx. If b > a > 0, we have

1/ b? — a2 cosh (z + artanh %) =1.

Therefore,
1
COSh (l’ —+ artanh %) = ﬂ
x + artanh % = tarcosh ER—

+ arcosh —— tanh

r = * arcosh ——— — artanh —

/02 — o2 b’
as desired.
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2. When a > b >0,

b
v a? — b%sinh <x + artanh ) =1.
a

Therefore,

1
V&

b
x + artanh — = arsinh ——
a a2 _ b2

b
sinh (x + artanh ) =
a

1 b
x = arsinh —— — artanh —.
2 _ b2

3. We would like to have two solutions to the equation 1 = asinh x + bcosh x.

e 0 < a < b, this gives

1
r = + arcosh ——— — artanh g,
2 _ g2 b

For this to make sense, we must have ﬁ > 1, and therefore 0 < Vb2 — a2 < 1, which is
0<b?—a?<1.

For this to have two distinct points, we would like to have arcosh ﬁ # 0 as well. This
means b? — a? # 1.
Therefore, in this case, this means that a < b < va? + 1.

e b = qa, this gives ae® = 1, which gives a unique solution z = —Ina.

e —a < b < a, this gives

B
vV A2 — B2sinh (I + artanh A) =1,

which can only give the solution z = arsinh \/ﬁ — artanh %.
e b = —a, this gives —ae™" = 1, which does not have a solution.

e —b < —a <0, this gives

—v/b% — a2 cosh (x + artanh ﬂ) =1,

b
but this is impossible, since both square root and cosh are always positive.
Therefore, the only possibility is when a < b < va? + 1.

4. When they touch at a point, this will mean at this value, the number of solutions will change on
both sides. This is only possible when b = /a2 + 1.

Therefore,

r = — artanh 4
vas+1
Hence,

y=atanhz 4+ b
= -0 ————=+Va?+1
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2016.3 Question 7

For w = exp %, we have for k =0,1,2,...,n — 1, that w* = exp % Therefore,
2mikn
(WF)™ = exp = exp(2mik) = 1.
Also, notice that argw” = %7”7 which means that all w®s are different.
This means that w® = 1,w' =1,w?,...,w™ ! are exactly the n roots to the polynomial 2™ — 1, which

has leading coefficient 1.
Therefore, we must have
(z—D(z-w) - (z—w" 1) =2"—1,

as desired.
For the following parts, W.L.O.G. let the orientation of the polygon be such that X = w*.

1. Let z represent the complex number for P, we have

n—1 n—1
H |PX}| = H |z—wk|
k=0 k=0
n—1

H(z—wk)

k=0
=" —1].

Since P is equidistant from X, and X7, we must have that P = rexp (%) for some r € R, where
|r| = |OP|. Therefore, we have

n—1

[T 1Pxil =" 1

k=0
T
" — ] -1
rexp<2) ’

== -1

=1,

If n is even, then 7 = |r|™ > 0, and therefore [r" + 1| = 7" + 1 =|r|" + 1 = |OP|" + 1 as desired.
If n is odd, and r > 0, then ™ = |r|™ > 0, and

LHS = |r" + 1]
=r"+1
= +1
=|0OP|" + 1.
When —1 <r <0, we have —1 <" = —|r|" < 0, and
LHS = |r" + 1|
=r"+1
= el +1
=—|OP|" +1.
When r < —1, we have ™ = —|r|™ < —1, and
LHS = |r" + 1]
=—r"—1
=r|" -1
= |OP|" - 1.
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In summary, when n is odd, we have

|OP|" +1, P is in the first quadrant,

n—1
H |PXk| =4 —|OP|" +1, P isin the third quadrant and |OP| < 1,
k=0 |OP|™ —1, P isin the third quadrant and |OP| > 1.

2. Notice that for a general point P whose complex number is z, we have

1:[ IPXp| = (z —w)(z —w?) -~ (z —w"Y)
k=1

z"—1
z—1
=1+4z+4+224+. 4271

If we let P = Xy, z =1, and RHS = n, just as we desired.
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2016.3 Question 8
1. If we replace x with —x in the original equation, we get
fl=2) + (1 = (=2)) f(=(~2)) = (-2)*,

which simplifies to

fl=2)+ (1 +2)f(z) = 2®
as desired.

Therefore, we have a pair of equations in terms of f(z) and f(—z):

f@)+ (1 -a)f(-z) =a?
(1+2)f(z) + f(-z) =22

Multiplying the second equation by (1 — x) gives us
(1 —a?)f(@) + (1 - 2)f(-2) =2?(1 - 2),
and subtracting the first equation from this
2 f(z) =~

which gives f(z) = .
Plugging this back, we have

LHS = f(2) + (1 - ) f(~2)
— 2+ (1-2)(~a)

zx—sc+332
::1:’2
= RHS

which holds. Therefore, f(x) = z is the solution to the functional equation.

2. For z # 1, we have

for x # 1, as desired.

The equation on g is
9(x) + xg(K(z)) = =,

and if we substitute = as K(z), we have
9(K(z)) + K(x)g(K(K(z))) = K(x),

which simplifies to
9(K(z)) + K(x)g(x) = K(z).

Multiplying the second equation by x, we have

eK(x)g(X) + 2g(K(z)) = 2K (x),
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and subtracting the first equation from this gives
(zK(x) = 1)g(z) = (K (z) — 1),

which gives

9() = K (z) —1

for x # 1.

If we plug this back to the original equation, we have

x+1

r—1

LHS = -2 44

2.
P )

z—1

2z 2e-(x+1)-(z—1)
24+1  (x4+1)24 (z—1)2

2x 2z(z2 — 1)
x2+1 222 + 2

2z z(x? —1)

Jr

x2+1 2241

_ 23 —x+22
2241
B (2?2 +1)
2+ 1
=z
= RHS,
SO 5
x
is the solution to the original functional equation.
3. Let H(z) = 1. Notice that
1
H(H(x)) = —
1—x
o 1l—x
S l-z-1
_z—1
oz
1
= ]_ —_ —
x
and
H(H(H(x)) = —
) =
1
1-(1-3)
_t
1
=z.
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Now, if we replace all the x with ﬁ7 we will get

() (),

and doing the same replacement again gives us

(1Y e (1)

Summing these two equations, together with the original equation, gives us that

2| (25 )+ (1-3) +a)| =32 w2 v (1-1)].

and therefore
1 1 3 1 1
1—= = 1—=).
h(l—x>+h( x)—i—h(az) 5 [x+1—m+< x)}

Subtracting the second equation from this, gives that

o= (3= () [ -(-3)

Plugging this back to the original equation, we have

1 1 1
LHS:§—1’+§—1_33
N * 11—z

— RHS,

which satisfies the original functional equation. Therefore, the original equation solves to
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2016.3 Question 12

1. Let X ~ B(100n,0.2). We have u = 100n - 0.2 = 20n, and 02 = 100n - 0.2 - 0.8 = 16n.
We have that

as desired, where we applied the Chebyshev Inequality for k = y/n > 0.

2. Let X ~ Po(n). Therefore, p = E(X) = n, 0 = y/Var(X) = y/n. To show the desired inequality
is equivalent to showing that

n

L+n+ %+ + &

1
en n

as desired, where we applied the Chebyshev Inequality for k = /n > 0.
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2016.3 Question 13

For a random variable X with E(X) = y and Var(X) = o2, we have

E[(X —p)']

K(X) = I

-3

g

We have Y = X — a. Therefore, E(Y) = . — a and Var(Y) = o2.

k(YY) = g 3
Bl(X-a) - (n-0)']
- 4
o
E[X -
- 1
o
= ﬂ(X)’
as desired.
1. Let X ~ N(0,02), u = 0. Notice that
E(X?)
K(X) = pran 3
X has p.d.f.
1 2
fx(z) = U\/%GXP (_2 2>
Therefore,

B(X*) =

Now, consider using integration by parts. Notice that

z? x z?
dexp <_M) =3 Xp (_W> dz,

and therefore, using integration by parts, we have

2
/x4exp( 2x2>d33

2
:—az/mgdexp (—;)

Therefore, considering the definite integral, we have

+oo 2
E(X*) = / ztexp ( ’ ) dx
oV 2r 202

wa

[3 oV2r - o - 0]

Il
[OV)
)
.Hk

+oo 2
/ zt exp < a: ) dz.
o2 202

2 2

2,3 x 37 3

-0 [m exp <_W> —/eXp (_W> d(z )}
2

a2 2 _Z 2.3 _Z

=30 /a: exp( 202>dx o°x exp( o=

+o0 x2 2
3 / 2?exp | ——— |dz — [23exp | ———
o 202 o
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Therefore,

as desired.

An alternative solution exists using generating functions.

Recall that a general normal distribution N(y, 0?) has MGF
2

M(t) = exp(ut + %tQ),

and hence

Mx (t) = exp (0221?2)

Therefore,

and the result follows.

2. Notice that

T4

_ 4 4 4 3 4 2v2
=X (g 2 | (s (o)
a a<b
Y PR AR PRIASAY
1,1,2) 77"« 1,1,1,1)°*7"°°¢

a<b<c a<b<c<d T
= Z YA+ Z(4Yay,,3 + 6Y2Y2) + Z 12Y,Y, Y2 + Z 24Y,Y, Y. Yy,
a a<b a<b<c a<b<c<d

where
n n! k
= a; =n
(al,ag,...,ak) ailas! ... ap! ; '
stands for the multinomial coefficient.
Note that E(Y,) = 0 for any r = 1,2,...,n. Therefore,

E(Y,Y?) = E(Y,) E(Y?) = 0,
E(Y,Y,Y?) = E(Y,) E(Y,) E(Y2) = 0,
E(Y,Y,Y.Yy) = E(Y,) E(Y;) E(Y.) E(Yy) =0
Therefore,
E(TY) =Y E(YH + Y 6EY2Y?)
a a<b
n n—1 n
=2 B +6) 0 >0 BODE),
r=1 r=1s=r+1

as desired.

3. Let V; = X; —pfori=1,2,...,n, and p = E(X),0% = Var(X) = Var(Y) with E(Y) =0
Therefore, let T=>""Y; = ' X; — nu, we must have E(T) = 0 and Var(T) = no?.
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But since the kurtosis remains constant with shifts, we must have that x(Y;) = &, and

Hence, we have

as desired.

E(T%)
(no?)?
S B 4605 S 0 B BOY)
n2g4 a
1 GKEYY) 62 & ot
DD D DD D=tk
r=1 r=1s=r+1

1 6 (n
3n+3n(n—1) — 3n?
+ 2
n

K
n
K
=40
n
K
)
n
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2017.3 Question 1

1. We have
r+1 1 1
RHS = —
n+r—1 n+r
r (( ) (7 ))
_r+l =1 rinl
- or (m+r—1! (n+r)!
_r+1 rin =1 n+7r) rli(n—1)n
o (n+m)! (n+m)!
_r+1 =D n+r)—rl(n—-1)n
Ty (n+m)!
o+l rl(n—1)lr
oor (n+r)!
_ (r+1Dl(n—-1)!
- (n+7r)!
. n—+r
S \r+1
= LHS
as desired.
Therefore,
f 1 _*fr+1< 1 1 )
ntry ntr—1\  (n+r
n=1 (r+1) n=1 r ( r ) ( T )
1R ( 11 )
ros e )
“+o0 —+o0
r+1 1 1
= n—+r - n+r
e
7T+1 1
T
_r+1
==
assuming the sum converges.
When r = 2, we have
n+2y ~ 9o
n=1 (L-Z; ) 2
When n =1, (%2) =1=1
Therefore,
n+2y ~ o
n:2( 3 ) 2
as desired.
2. Notice that
i! < 1 Zi' < 3!
nd (" n3 ~ (n+1)n(n—1)

n3 > (n+ n(n — 1)
n? >n(n? —1)
nd>n—n

n >0,
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which is true.

Also, notice that

20 1 < i‘ — 5! 5! - i‘
()T W T mrDme-1) G erDmn-n-2)
(n+2)(n—2)-1 1
<~ < —
(n+2)(n+1)(n)(n—-1)(n-2) " n?
— (n*-5)n® < (n? —4)(n* - 1)n
— n® —bnd <nd —5n+4n
<~ 4n > 0,
which is true.
Therefore, we have that
“+oo “+o0
3!
25 <2
n= 3

_ *f ;
n=2 (n§_2)
_1

2 b
and therefore ST

On the other hand, we have

+o0 1 +oo 1
:202 n+2 _Z n—+4
n=2(3) n=1(5)
1 5
=20 - ——
2 4
5
=10— -
4
5
=
and therefore 1°0 & > Loand 3% L > 1+ 1+ & =42,
Hence,
—+oo
115 1 116
— < — < —
96 ; n3 96
as desired.

+oo 1 1.1 _ 20 _ 116
o s < gz and D07 oh <14+ 95 =5 = bg
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2017.3 Question 2
1. Let the complex number representing R(P) be z’. Therefore,
2 —a=exp(if)(z — a),
2" = zexp(if) + a(1 — exp(if)),
as desired.
2. Let the complex number representing SR(P) be z”. Therefore,
2" —b=exp(ip)(z —b),
= 2" exp(ip) + b(1 — exp(ip)),

2" = [zexp(if) + a(1 — exp(if))] exp(ip) + b(1 — exp(ip)),
2" = zexp(i (0 + ¢)) + a(l — exp(if)) exp(ip) + b(1 — exp(ip)).

This will be an anti-clockwise rotation around ¢ over an angle of (6 + ¢), where
e[l —exp(i(f + ¢))] = aexp(ip) — aexp(i (6 + ¢)) + b — bexp(ip),

If 6 4+ ¢ = 2nx for some integer n € Z, 1 — exp(i(6 + ¢)) = 0, therefore ¢ cannot be determined.

Multiplying both sides by exp (—W), we have

(5 ()]
o (2552) o (1252 o o (252 - (7))

and hence
0 3 0 0
—2cisin <—|2—<p> = —2aiexp (Z;O) sin <2> — 2bi exp (_22) sin (%) ,
0+ ¢ 1P 0
X

If 6 + ¢ = 27, we will have 2" = z 4+ aexp(ip) — a + b(1 — exp(ip)) = z + (b — a)(1 — exp(ip)),
which is a translation by (b — a)(1 — exp(iy)).

3. If RS = SR, then we have

a(l —exp(if)) exp(iv) + b(1 — exp(ip)) = b(1 — exp(ip)) exp(if) + a(l — exp(id)),
a(—1+ exp(iyp) + exp(if) — exp(i(0 + ¢))) = b(—1 + exp(ip) + exp(if) — exp(i(6 + ©))),
(4~ B)(1 — exp(ip))(1 — exp(i6)) = 0.

Therefore, a = b, or ¢ = 2nm, or § = 2nmx, for some integer n € Z.
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2017.3 Question 3
By Vieta’s Theorem, from the quartic equation in x, we have
af+ay+ad+ By +Bi+v0=q,
and from the cubic equation in y, we have
(aB +78) + (ay + Bd) + (ad + By) = —A.
Therefore, A = —q.
1. Since (p, q,r,s) = (0,3,—6,10), the cubic equation is reduced to
y® —3y* — 10y + 84 = 0,

and therefore
(y—2)(y—T7)(y+6)=0.
Therefore, y; = 7,y2 = 2,y3 = —6, and o +vd = T.

2. We have

(a+B)(y+08) =ay+ad+ v+ 88
=(af+ay+ad+ By + Bd+76) — (af +79)
=q-—7
=3-7
= —4.

By Vieta’s Theorem, we have afvyd = s = 10. Therefore, o and vé must be roots to the equation

22— Tz +10=0.

The two roots are z = 2 and z = 5, and therefore a8 = 5.

3. We have from the other root that vé = 2.
We notice that (a+ 8) + (v + ) = —p = 0. Therefore, from part 2, (o + 5) and (7 + J) are roots
to the equation
z® —4=0.
This gives us o + = +2 and v+ 6 = F2.

Using the value of r and Vieta’s Theorem, we have
aBy+ afd +ayd + Bvd = —r =6.

Plugging in af =5 and v = 2, we have
5(y+40) +2(a+ 3) =6.

Therefore, it must be the case that « + = —2 and v+ § = 2.

Hence, using the values of a8 and +d, a and 3 are solutions to the quadratic equation x2+2x+5 = 0,
and 7 and § are solutions to the quadratic equation 2% — 2z + 2 = 0.

Solving this gives us o, 8 = —1 4+ 2i and «,0 = 1 4. The solutions to the original quartic equation
is
T1,2 = -1+ 22',.233,4 =1=£1.
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2017.3 Question 4

. —L
1. Notice that a = e™® and hence a® = **?, g=ma = e®we have

exp (; [j In f(z) dx)

_ aylita'foy In f(x)dz

F(y)

1.y Inf(=)
o aﬂ' 0 Ina dz

— qv )3 log, f(w)dz
as desired.

2. We have

/O *1n f(2)g(x) da:)

/0 " (in f(2) + Ing(x) dx]

1
Y
1
Y
5 (/Oylnf(x)dx—i—/oylng(:r)dx)]
1
Y

; /Oy Ing(x) d:c>

I
o
¥
o
Y
(=)
<
—
=]
~
—
B
o,

8
~_
)

M
ke
/‘\

3. Let f(z) = b".

Fly) = exp (; /0 " f(2) dx)

_ b% JJ logy, f(z) dz
_ b% JJ log,, b® dz

¥
2

(¥ <=

b
b

Vb,

4. Since F(y) = v/ f(y), we notice that f(y) = F(y)? = exp (% foy In f(x) dx), and therefore In f(y) =
% J In f(z) da.
We substitute g(y) = In f(y), and therefore

Therefore, differentiating both sides with respect to y gives us

yg'(y) + 9(y) = 29(y),

and therefore
—g(y) +vg'(y) = 0.

Multiplying =2 on both sides gives us

—y%g(y) +y g (y) =0,

and therefore
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and therefore

Therefore, we have

f(y) =expy(y)
= exp(Cy)
= by

if we substitute b = exp(C) > 0, and therefore f(z) = bY as desired.
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2017.3 Question 5

Since we have x = rcosf and y = rsinf, and r = f(0), we have

@ dr 0+ dcosf
0o - COoS Y
= f'(6) cos® — f(6)sin6,
and
dy dr dsin 6
ag —as ™ tr de
= f'(0)sinf + f(6) cos b
Therefore,
d
dy _ @
dz
dz S
_ f'(0)sinf + f(0) cos O
~ f'(0) cosf — f(6)sin6
_ f'(0) tan 6 + f(0)
f(0) — f(6) tan 6
For the two curves, we must have
dy| dy| _
dz f dzx p

for them to meet at right angles. Therefore,
f'(0)tan 6 + f(0) ¢'(6) tan 0 +g(0) _
f1(0) — (@) tanb ¢’ (6) — g(6) tan 6
(f'(0) tan 0 + £(0)) - (¢'(0) tan & + g(0)) = — (f'(0) — f(0) tan ) - (¢'(0)
F(0)d' (0)(1 +tan?0) + £(0)g(0)(1 + tan®9) = 0
f1(0)g' () + f(0)g(0) = 0.

We have f (—%) =4. Let
9a(0) = a(1 + sinb).
Therefore,
gn(0) = acos®,
and we have
f(0)(acosO) + f(B)a(l +sinf) = 0,
and therefore
df(9)
de

cosf = —f(0)(1+sinb).

By separating variables we have

df()  do(1+sin0)
o cosf

Notice that
~14sinf  (1—sind)(1l+sinf) cosf  cosf

cos  (1—sinf)cosd 1—sinf sinf—1

integrating both sides gives us
Inf(f) =In|sind — 1|+ C =1n(1 —sinf) + C,

which gives

f(0) = A(1 —sin9).
Since f (—%) = 4, we have 24 = 4 and A = 2, therefore f(0) = 2(1 — sin6).

— g(0) tan 0)
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r =4(1+ sinb)

r=1+sinf

—

r=2(1—sinf)
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2017.3 Question 6

1. Consider the substitution u = %

When v — 07, v = +o0.

When u =z, v = L.

x

We also have

1
du:—ﬁdv
Therefore,
T du
T =
() /01+u2
1
« 1 1
oY
400 U 1+vj
/+°O dv
o 1 1+ v2
B T o /1 dv
o 1402 Jy 1402
=Ty —T(z™Y),
as desired.
2. When u # a~!, we have
dv d u+a

du ~ dul-—au
_1-(I-au)+a-(u+ta)
B (1 - au)?
1—au+ au+a?
(1 —au)?
1+a?
(1 —au)?’

Also, notice that

2
1402 1"‘(1“74_;1)
1+u2 142
(1 —au)? + (u+ a)?
(14 u?)(1 - au)?

_ 1 — 2au + a?u? + u? + 2au + a?

(14 u?)(1 — au)?
_ (+a)(1+u?)
(1—au)?(1 +u?)
1+ a?
(1 —au)?’

2 .
Therefore, g—z = }izz as desired.
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Consider the substitution v = fii When v =0, v =a. When u = x,v = 1z+“
* o du
T(x) = —_—
() /0 1+ u?
B =5 1 +u? dv
L. 1+02 14w?
. /lx+aaac de
S 1+ 02
_ /fj‘laf dv /a dv
- 0 1 + U2 0 1 + UQ
rT+a
=T -T
(22) -,
as desired.
If we substitute T'(z) = Too — T(z7 1) and T(a) = Too — T'(a™1), we can see that

T+ a

T+ a
Too —T(z™1) = — [T — T(a™?
@ =1 (50 ) - [ - ()]
T+ a
Tz ') =2T —T —T(a?
@) (£22) -1
as desired.
Now, let y =2~ ! and b = ¢~ !. Then
r+a oy l4+b7!
l—azx 1-b-1ly-!
bty
by —1°

This gives us
T(

as desired.

b+vy

y) :QTOO—T(by_l) —T(b),

3. Let y = b = /3. We can easily verify that b > 0 and y > %. Therefore,

T(V3)

which simplified, gives us T'(v/3) =

rta
l—az

In T(z) = T(

have

T(V2-1)
T(V2-1)
T(vV2
2T (/2

2T — T (@f f) ~T(V3),

%TOO as desired.

2-1)+(vV2-1)
T(l V2 -1) (\@—1)>_T(\/§_1)’
2v/2 — 2
T(l_ 2“_2[)) T(V2 - 1),
2v/2 —
T(Q\[ 2) T(V2-1),

Therefore,

) —T(a), let x = a = /2 — 1, we can verify that a > 0 and = < %7 therefore we
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In T(x) = Too — T(x71), let z = 1. We have

Therefore, T(v/2 — 1) = 1T, as desired.
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2017.3 Question 7

x? y2 1—2\? 2t 2

(1—-12)° + (20)°
(1+1¢2)?

1— 262 44 + 442
(1+12)?

14 2t2 4t

(1+12)?

(1 +t2)

(1 +t2)

=1

as desired, so T lies on the ellipse £ o + pz =1

1. The gradient of L must satisfy that

dy dy/dt

dz ~ dz/dt

b d(2t/(1+1t7))/dt

a d((1-t2)/(1+¢t?))/dt
b 2. (147 —2t-2t
a —2t-(1+¢2)—(1—1¢2)-2t
b

b

2+ 2t — 4¢2
L2t — 213 — 2t + 243
1—¢2
ot

Therefore, we have a general point (X,Y) € L satisfy that

206 b 1—1¢? a(l —t?)
142 a0 -2 '<X_ 1+12 >
(14t3)Y — 2bt = g - 1:;) ((1+ )X —a(1—t%))
(—2at)(1 +2)Y — (—2at)(2bt) = b- (1 — %) - (1 +*)X — a(1l — %))

(—2at)(1 +t*)Y = b(1 — t*)(1 + t*)X — ab(1 — t*)* — 4abt?
(—2at)(1 +12)Y = b(1 — t3)(1 + t*) X — ab(1 + t*)?
—2atY = b(1 —t*)X — ab(1 +t?)
ab(1 +t?) — 2atY —b(1 —t3)X =0
(a+ X)bt? —2aYt +bla— X) =0

as desired.
Now if we fix X, Y and solve for ¢, there are two solutions to this quadratic equation exactly when
(2aY)? —4(a+ X)b-bla — X) >0
(aY)? = (a+ X)(a — X)b* >0
a®Y? > (a® — X%,

which corresponds to two distinct points on the ellipse.
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Since a?Y? > (a® — X?)b?, we have %22 >1- f—; by dividing through a?b? on both sides, i.e.

X2 y?
+7

G,T b2 >1,

which means when the point (X,Y") lies outside the ellipse.

This also holds when X2 = a2, i.e. when the point (X,Y) lies on the pair of lines X = +A. Here,
the condition is simply a?Y? > 0, which gives Y # 0. One of the tangents will be the vertical line
X = £ A (whichever one the point lies on), and the other one as a non-vertical (as shown when
X = a, the tangents being L; and Ls).

2. By Vieta’s Theorem, we have

bla—X)
Py x) et et
as desired, and
o= —2aY  24dY
Pra= "G+ X)p ~ (a+X)b

Let X = 0 for the equation in L,

abt®> —2aYt+ba =0
bt? —2Yt+b=0
b(1+t2)

y=2""7
2

Therefore,

b(1+p*)  b(1+4¢%

Y1 +y2 = % + %
b[(1+p*)g+ (1+¢?)p]
2pq

=2b

)

therefore we have
4pg = (1+p*)g+ 1+ ¢*)p = (p+ q)(1 + pq).
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Therefore,
a—X = 2aY 2a
a+X (a+X) a+X
a’Y
X =
“ b(a+ X)
(a—X)(a+ X)b=a%Y
(a®> — X*)b=a’Y
XY
a2 b
£2+X_1
a? b
as desired.
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2017.3 Question 8
We have

n

am<bm+l - bm) - Z ambm+1 - Z ambm
m=1 m=1

m=1

n—1 n
- - E bm+1am+l + E bm+1am
m=0 m=1

n n
= - Z bm-‘rla’m—i-l + Z bm-‘rla'm + a’TL+1b7L+1 - albl

m=1 m=1

n
- an+1bn+1 - albl - Z bnt+1(am+1 - am);

m=1
as desired.

1. Let a,, = 1. On one hand, we have

n n

Z (b1 — bm) = Z [sin(m + 1)x — sin mz]

m=1 m=1

On the other hand, we have

n

Z am(bm+1 - bm) = On41bny1 —a1by — Z bm+1(am+1 - am)

m=1 m=1

=sin(n + 1)z — sinz.

Therefore, by rearranging, we have

- 1 1. . 1
Z oS (m + 2) z= [sin(n 4+ 1)a — sin z] cosec 2%

m=1
as desired.

2. Let a,, = m, and let b, = cos (m — %) x. We have the identity

cos A — cos B = —2sin (M) sin (A_B> .
2 2
Therefore, we have

mX::lam(berl —bp) = mz::lm- {COS (m + 2) Z — CoS (m - 2> 1}
. . 1
= Z —2m sin mx sin ix
m=1
= —2sin -z Z msinmz,

m=1
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and

am(bm+1 - bm)
m=1

- an+1bn+1 - albl - § bm+1(am+1 - am)

1 - 1
)x—1~cos2x—z:cos<m+2)x-1

m=1

1 1 - 1
n+2>m—cos2x— Zcos<m+2>x
1

DN | =

=(n+1)cos(n+

(n+1)cos

m=1

11 . 1
=(n+1)cos (n + 2) T —cosgr— g (sin(n + 1)z — sin x) cosec 2%

1 1 1 .1 1 .1 . .
5 cosec 5 {2 (n+1)cos (n + 2) sin ;o — 2 cos Fesin g — (sin(n + 1)z — sinz)

1 1

=  cosec 5 [(n+1) (sin(n+ 1)z —sinnz) — (sinz — sin0) — (sin(n + 1)z — sinz))
1

= 5 cosec 5 [nsin(n + 1)z — (n + 1) sinna].

Therefore, we have

n
1 1
—2sin 22 Z msinma = 5 cosec o [nsin(n + 1)z — (n + 1) sin na]
m=1
n

: 1 2 1 . :
Z msinme = — - cosec” Jx [nsin(n + 1)z — (n+ 1) sinnz],

m=1

and therefore, p = —1in, ¢ = 1(n +1).
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2017.3 Question 12
1. First, note that

1= %l P(X=2Y=y)
x,y=1
= Z Z k(z +y)
rx=1y=1
= Z Z(k‘x + ky)
rz=1y=1

:i (nkx+kiy>
=1 y=1
= nk‘ix—&—nk‘zﬂ:y
=1 y=1
=n?(n+1)k

Therefore, k = m

Il
(7=

™
B

4
s

nkx + kzn:y
y=1

— ka4 kn(n+1)

T 1

nin+1) Jr%
2c+n+1
2n(n+1)’

as desired.

2y+n+1

By symmetry, P(Y = y) = 2n(ntl)"

We have

2z+n+1)2y+n+1)

PX =) P(Y =y) = An2(n+ 1)

BuP(X =2Y =y) = n;ﬁ:jil) is not equal to this. So X and Y are not independent.

2. By definition,
Cov(X,Y) =E(XY)-E(X)E(®Y).
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We have

|
3
g\r—l
o
]
N}
_|_
|-
g
~+

6 4
_4n+2+43n+3
- 12
_Tn+5

12

and

=Y ay P(X=2Y=y)

z,y=1

Ty J;—i—y
_ZZnQnJrl

rz=1y=1

= n—|—1 ZZznyry

llyl

= n+1 Zny—i—xy

- n+1 ZIQZ;wZﬂﬂZyz
B 1 9. n(n+1)2n+1) n(n+1)
- n2(n+1) 6 2
_ @2n+1)(n+1)
—s

S

Therefore,

Cov(X,Y) =E(XY) — E(X)E(Y)
_ @n+1)(n+1)  (Tn+5)?
- 6 144
48n2 + 72n+24  49n2 + 70n + 25
144 B 144
—n?24+2n—1
144

(n—1)

144

<0,

as desired.

Eason Shao Page 48 of 50



STEP Project Year 2017 Paper 3

2017.3 Question 13
We have

V(z) = E[(X - 2)’]

BE(X? - 22X + 2?)
E(X?) — 20 E(X) + 22
o —l—,u2

—2zp + 22
Therefore, if Y = V(X), then
E(Y) =E(V(X))
=E(o? + p® — 2Xp + X?)
=02+ u? - 2uE(X) + E(X?)
=02+ p? =202 + p® + 02
=207
Let X ~ U[0,1], we have = E(X) = %, and 0 = Var(X) = ;. Therefore,
1

V(z) = E—i—z—x—i—m
— 2 el
= a:+3.
The c.d.f. of X is F, defined as
0, =<0,
PX<z)=F(x)=1z, 0<z<1,
1, 1<z

Let the c.d.f. of Y be G, we have G(y) = P(Y < y).

Since V([0,1]) = [{5, 3], we must have G(y) = 0 for y < 15 and G(y) =1 for y > &.

For y € (%, %}, we have

G(y) =P <y)=P(V(X) <

y
N1
Ty 12 =Y

1>

)
s

Therefore, the p.d.f. of y, g satisfies that for y € (% %]

g(y) =G'(y) =

Y= 12

and 0 everywhere else.
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Hence, we have

12 Yy — 12
Yy=3 / 1
=13

1

11 4 1

=2.-.-_ = .
3 2 3 8

_1

6

Also, 202 =2 & = 2 = E(Y), so the formula we derived holds in this case.
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